2022 AIME II Problems/Problem 7
Contents
Problem
A circle with radius is externally tangent to a circle with radius . Find the area of the triangular region bounded by the three common tangent lines of these two circles.
Solution 1
, , , ,
, , ,
,
Solution 2
Let the center of the circle with radius be labeled and the center of the circle with radius be labeled . Drop perpendiculars on the same side of line from and to each of the tangents at points and , respectively. Then, let line intersect the two diagonal tangents at point . Since , we have Next, throw everything on a coordinate plane with and . Then, , and if , we have Combining these and solving, we get . Notice now that , , and the intersections of the lines (the vertical tangent) with the tangent containing these points are collinear, and thus every slope between a pair of points will have the same slope, which in this case is . Thus, the other two vertices of the desired triangle are and . By the Shoelace Formula, the area of a triangle with coordinates , , and is
~A1001
Solution 3
(Taking diagram names from Solution 1. Also say the line that passes through O_1 and is parallel to line EF, call the points of intersection of that line and the circumference of circle O_1 points X and Y.)
First notice that is a straight line because DXY is an isosceles triangle(or you can realize it by symmetry). That means, because is a straight line, so angle , triangle is similar to triangle . Also name . By our similar triangles, . Solving we get . Pythagorean Theorem on triangle shows . By similar triangles, which means . Because , . , which means . $CD = DO_2 \mbox{(its value found earlier in this solution)} + CO_2\mbox{(O_2 's radius)} = 10 + 6 = 16$ (Error compiling LaTeX. Unknown error_msg). The area of DEF is .
~Professor Rat's solution, added by heheman
Video Solution (Mathematical Dexterity)
https://www.youtube.com/watch?v=7NGkVu0kE08
See Also
2022 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 6 |
Followed by Problem 8 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.