2022 AIME II Problems/Problem 5
Problem
Twenty distinct points are marked on a circle and labeled through in clockwise order. A line segment is drawn between every pair of points whose labels differ by a prime number. Find the number of triangles formed whose vertices are among the original points.
Solution
Let , , and be the vertex of a triangle that satisfies this problem, where .
. Because is the sum of two primes, and , or must be . Let , then . There are only primes less than : . Only plus equals another prime. .
Once is determined, and . There are values of where , and values of . Therefore the answer is
Note: I believe that you also need , so you cannot just simply do . In addition, it is possible for to occur. You would need to do casework to make sure does not go above 20.
If you did the casework, it should come out to be . It just so happens that .
See Also
2022 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 4 |
Followed by Problem 6 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.