2022 AIME II Problems/Problem 12

Revision as of 12:21, 7 February 2023 by Jacob3abraham (talk | contribs) (Undo revision 186663 by Hayabusa1 (talk))
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

Let $a, b, x,$ and $y$ be real numbers with $a>4$ and $b>1$ such that\[\frac{x^2}{a^2}+\frac{y^2}{a^2-16}=\frac{(x-20)^2}{b^2-1}+\frac{(y-11)^2}{b^2}=1.\]Find the least possible value of $a+b.$

Solution

Denote $P = \left( x , y \right)$.

Because $\frac{x^2}{a^2}+\frac{y^2}{a^2-16} = 1$, $P$ is on an ellipse whose center is $\left( 0 , 0 \right)$ and foci are $\left( - 4 , 0 \right)$ and $\left( 4 , 0 \right)$.

Hence, the sum of distance from $P$ to $\left( - 4 , 0 \right)$ and $\left( 4 , 0 \right)$ is equal to twice the major axis of this ellipse, $2a$.

Because $\frac{(x-20)^2}{b^2-1}+\frac{(y-11)^2}{b^2} = 1$, $P$ is on an ellipse whose center is $\left( 20 , 11 \right)$ and foci are $\left( 20 , 10 \right)$ and $\left( 20 , 12 \right)$.

Hence, the sum of distance from $P$ to $\left( 20 , 10 \right)$ and $\left( 20 , 12 \right)$ is equal to twice the major axis of this ellipse, $2b$.

Therefore, $2a + 2b$ is the sum of the distance from $P$ to four foci of these two ellipses.

To make this minimized, $P$ is the intersection point of the line that passes through $\left( - 4 , 0 \right)$ and $\left( 20 , 10 \right)$, and the line that passes through $\left( 4 , 0 \right)$ and $\left( 20 , 12 \right)$.

The distance between $\left( - 4 , 0 \right)$ and $\left( 20 , 10 \right)$ is $\sqrt{\left( 20 + 4 \right)^2 + \left( 10 - 0 \right)^2} = 26$.

The distance between $\left( 4 , 0 \right)$ and $\left( 20 , 12 \right)$ is $\sqrt{\left( 20 - 4 \right)^2 + \left( 12 - 0 \right)^2} = 20$.

Hence, $2 a + 2 b = 26 + 20 = 46$.

Therefore, $a + b = \boxed{\textbf{(023) }}.$

~Steven Chen (www.professorchenedu.com)

Video Solution

https://youtu.be/4qiu7GGUGIg

~MathProblemSolvingSkills.com


See Also

2022 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png