2001 AMC 12 Problems/Problem 6

Revision as of 01:49, 28 June 2023 by Wes (talk | contribs) (Solution)
The following problem is from both the 2001 AMC 12 #6 and 2001 AMC 10 #13, so both problems redirect to this page.

Problem

A telephone number has the form $\text{ABC-DEF-GHIJ}$, where each letter represents a different digit. The digits in each part of the number are in decreasing order; that is, $A > B > C$, $D > E > F$, and $G > H > I > J$. Furthermore, $D$, $E$, and $F$ are consecutive even digits; $G$, $H$, $I$, and $J$ are consecutive odd digits; and $A + B + C = 9$. Find $A$.

$\textbf{(A)}\ 4\qquad \textbf{(B)}\ 5\qquad \textbf{(C)}\ 6\qquad \textbf{(D)}\ 7\qquad \textbf{(E)}\ 8$

Solution

We start by noting that there are $10$ letters, meaning there are $10$ digits in total. Listing them all out, we have $0, 1, 2, 3, 4, 5, 6, 7, 8, 9$. Clearly, the most restrictive condition is the consecutive odd digits.

Case 1: $G$, $H$, $I$, and $J$ are $7$, $5$, $3$, and $1$ respectively.


A cursory glance allows us to deduce that the smallest possible sum of $A + B + C$ is $11$ when $D$, $E$, and $F$ are $8$, $6$, and $4$ respectively, so this is out of the question.

Case 2: $G$, $H$, $I$, and $J$ are $3$, $5$, $7$, and $9$ respectively.


A cursory glance allows us to deduce the answer. Clearly, when $D$, $E$, and $F$ are $6$, $4$, and $2$ respectively, $A + B + C$ is $9$ when $A$, $B$, and $C$ are $8$, $1$, and $0$ respectively, giving us a final answer of $\boxed{\textbf{(E)}\ 8}$

See Also

2001 AMC 12 (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions
2001 AMC 10 (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png