2000 AIME II Problems/Problem 2

Revision as of 19:30, 4 July 2013 by Nathan wailes (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

A point whose coordinates are both integers is called a lattice point. How many lattice points lie on the hyperbola $x^2 - y^2 = 2000^2$?

Solution

\[(x-y)(x+y)=2000^2=2^8 \cdot 5^6\]

Note that $(x-y)$ and $(x+y)$ have the same parities, so both must be even. We first give a factor of $2$ to both $(x-y)$ and $(x+y)$. We have $2^6 \cdot 5^6$ left. Since there are $7 \cdot 7=49$ factors of $2^6 \cdot 5^6$, and since both $x$ and $y$ can be negative, this gives us $49\cdot2=\boxed{098}$ lattice points.

See also

2000 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png