1983 AIME Problems/Problem 2

Revision as of 18:04, 15 February 2019 by Sevenoptimus (talk | contribs) (Cleaned up the solution)

Problem

Let $f(x)=|x-p|+|x-15|+|x-p-15|$, where $0 < p < 15$. Determine the minimum value taken by $f(x)$ for $x$ in the interval $p \leq x\leq15$.

Solution

It is best to get rid of the absolute values first.

Under the given circumstances, we notice that $|x-p|=x-p$, $|x-15|=15-x$, and $|x-p-15|=15+p-x$.

Adding these together, we find that the sum is equal to $30-x$, which attains its minimum value (on the given interval $p \leq x \leq 15$) when $x=\boxed{015}$.

See Also

1983 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions