2022 AIME II Problems/Problem 14

Revision as of 12:30, 19 February 2022 by Isabelchen (talk | contribs) (Solution 1)

Problem

For positive integers $a$, $b$, and $c$ with $a < b < c$, consider collections of postage stamps in denominations $a$, $b$, and $c$ cents that contain at least one stamp of each denomination. If there exists such a collection that contains sub-collections worth every whole number of cents up to $1000$ cents, let $f(a, b, c)$ be the minimum number of stamps in such a collection. Find the sum of the three least values of $c$ such that $f(a, b, c) = 97$ for some choice of $a$ and $b$.

Solution 1

Notice that we must have $a = 1$, otherwise $1$ cent stamp cannot be represented. At least $b-1$ numbers of $1$ cent stamps are needed to represent the values less than $b$. Using at most $c-1$ stamps of value $1$ and $b$, it can have all the values from $1$ to $c-1$ cents. Plus $\lfloor \frac{999}{c} \rfloor$ stamps of value $c$, every value up to $1000$ can be represented. Therefore using $\lfloor \frac{999}{c} \rfloor$ stamps of value $c$, $\lfloor \frac{c-1}{b} \rfloor$ stamps of value $b$, and $b-1$ stamps of value $1$, all values up to $1000$ can be represented in sub-collections, while minimizing the number of stamps.

So, $f(a, b, c) = \lfloor \frac{999}{c} \rfloor + \lfloor \frac{c-1}{b} \rfloor + b-1$, $b<c-1$

$\lfloor \frac{999}{c} \rfloor + \lfloor \frac{c-1}{b} \rfloor + b-1 = 97$. We can get the answer by solving this equation.

$c > \lfloor \frac{c-1}{b} \rfloor + b-1$

$\frac{999}{c} + c > \lfloor \frac{999}{c} \rfloor + \lfloor \frac{c-1}{b} \rfloor + b-1 = 97$

$c^2 - 97c + 999 > 0$, $c > 85.3$ or $c < 11.7$

$\lfloor \frac{999}{c} \rfloor + \lfloor \frac{c-1}{b} \rfloor + b-1 > \frac{999}{c}$

$97 > \frac{999}{c}$, $c>10.3$

$\textbf{Case 1:}$ For $10.3 < c < 11.7$, $c = 11$, $\lfloor \frac{999}{11} \rfloor + \lfloor \frac{10}{b} \rfloor + b-1 = 97$
$\lfloor \frac{10}{b} \rfloor + b = 8$, $b=7$
$\textbf{Case 2:}$ For $c>85.3$, 
$\textbf{Case 2.1:}$ $c = 86$, $\lfloor \frac{999}{86} \rfloor + \lfloor \frac{85}{b} \rfloor + b-1 = 97$
$\lfloor \frac{85}{b} \rfloor + b = 87$, $b=87 > c$, no solution
$\textbf{Case 2.2:}$ $c = 87$, $\lfloor \frac{999}{87} \rfloor + \lfloor \frac{86}{b} \rfloor + b-1 = 97$
$\lfloor \frac{86}{b} \rfloor + b = 87$, $b=86$ or $1$, neither values satisfy $a < b < c-1$, no solution
$\textbf{Case 2.3:}$ $c = 88$, $\lfloor \frac{999}{88} \rfloor + \lfloor \frac{87}{b} \rfloor + b-1 = 97$
$\lfloor \frac{87}{b} \rfloor + b = 87$, $b=86$
$\textbf{Case 2.4:}$ $c = 89$, $\lfloor \frac{999}{89} \rfloor + \lfloor \frac{88}{b} \rfloor + b-1 = 97$
$\lfloor \frac{88}{b} \rfloor + b = 87$, $b=86$

The $3$ least values of $c$ is $11$, $88$, $89$. $11 + 88+ 89 = \boxed{\textbf{188}}$

~isabelchen

See Also

2022 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png