2011 AMC 12A Problems/Problem 3

Revision as of 17:56, 10 August 2023 by Technodoggo (talk | contribs)

Problem

A small bottle of shampoo can hold $35$ milliliters of shampoo, whereas a large bottle can hold $500$ milliliters of shampoo. Jasmine wants to buy the minimum number of small bottles necessary to completely fill a large bottle. How many bottles must she buy?

$\textbf{(A)}\ 11 \qquad \textbf{(B)}\ 12 \qquad \textbf{(C)}\ 13 \qquad \textbf{(D)}\ 14 \qquad \textbf{(E)}\ 15$

Solution 1

To find how many small bottles we need, we can simply divide $500$ by $35$. This simplifies to $\frac{100}{7}=14 \frac{2}{7}.$ Since the answer must be an integer greater than $14$, we have to round up to $15$ bottles, or $\boxed{\textbf{E}}$

Solution 2

We double $35$ to get $70.$ We see that $70\cdot7=490,$ which is very close to $500.$ Thus, $2\cdot7+1=\boxed{\text{(E)} 15$ (Error compiling LaTeX. Unknown error_msg) bottles are enough. ~Technodoggo

Video Solution

https://youtu.be/A6oQF25ayzo

~savannahsolver

See also

2011 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions
2011 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png