2005 AIME I Problems/Problem 14
Problem
Consider the points and There is a unique square such that each of the four points is on a different side of Let be the area of Find the remainder when is divided by 1000.
Solution
Let denote a normal vector of the side containing . The lines containing the sides of the square have the form , , and . The lines form a square, so the distance between and the line through equals the distance between and the line through , hence , or . We can take and . So the side of the square is , the area is , and the answer to the problem is .
See also
2005 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |