2017 AMC 8 Problems/Problem 25

Revision as of 22:46, 13 January 2023 by Saxstreak (talk | contribs) (Video Solutions)

Problem

In the figure shown, $\overline{US}$ and $\overline{UT}$ are line segments each of length 2, and $m\angle TUS = 60^\circ$. Arcs $\overarc{TR}$ and $\overarc{SR}$ are each one-sixth of a circle with radius 2. What is the area of the region shown?

[asy]draw((1,1.732)--(2,3.464)--(3,1.732)); draw(arc((0,0),(2,0),(1,1.732))); draw(arc((4,0),(3,1.732),(2,0))); label("$U$", (2,3.464), N); label("$S$", (1,1.732), W); label("$T$", (3,1.732), E); label("$R$", (2,0), S);[/asy]

$\textbf{(A) }3\sqrt{3}-\pi\qquad\textbf{(B) }4\sqrt{3}-\frac{4\pi}{3}\qquad\textbf{(C) }2\sqrt{3}\qquad\textbf{(D) }4\sqrt{3}-\frac{2\pi}{3}\qquad\textbf{(E) }4+\frac{4\pi}{3}$

Solution 1

Let the centers of the circles containing arcs $\overarc{SR}$ and $\overarc{TR}$ be $X$ and $Y$, respectively. Extend $\overline{US}$ and $\overline{UT}$ to $X$ and $Y$, and connect point $X$ with point $Y$. [asy] unitsize(1 cm); pair U,S,T,R,X,Y; U =(2,3.464); S=(1,1.732); T=(3,1.732); R=(2,0); X=(0,0); Y=(4,0); draw(U--S); draw(S--U--T); draw(S--X--Y--T,red); draw(arc(X,R,S),red); draw(arc(Y,T,R),red); label("$U$",U, N); label("$S$", S, W); label("$T$", T, E); label("$R$", R, S); label("$X$",X, W); label("$Y$", Y, E); [/asy] We can clearly see that $\triangle UXY$ is an equilateral triangle, because the problem states that $m\angle TUS = 60^\circ$. We can figure out that $m\angle SXR= 60^\circ$ and $m\angle TYR = 60^\circ$ because they are $\frac{1}{6}$ of a circle. The area of the figure is equal to $[\triangle UXY]$ minus the combined area of the $2$ sectors of the circles (in red). Using the area formula for an equilateral triangle, $\frac{a^2\sqrt{3}}{4},$ where $a$ is the side length of the equilateral triangle, $[\triangle UXY]$ is $\frac{\sqrt 3}{4} \cdot 4^2 = 4\sqrt 3.$ The combined area of the $2$ sectors is $2\cdot\frac16\cdot\pi r^2$, which is $\frac 13\pi \cdot 2^2 = \frac{4\pi}{3}.$ Thus, our final answer is $\boxed{\textbf{(B)}\ 4\sqrt{3}-\frac{4\pi}{3}}.$

Solution 2

[asy]draw((1,1.732)--(2,3.464)--(3,1.732)); draw(arc((0,0),(2,0),(1,1.732))); draw(arc((4,0),(3,1.732),(2,0))); label("$U$", (2,3.464), N); label("$S$", (1,1.732), W); label("$T$", (3,1.732), E); label("$R$", (2,0), S);[/asy]

In addition to the given diagram, we can draw lines $\overline{SR}$ and $\overline{RT}.$ The area of rhombus $SRTU$ is half the product of its diagonals, which is $\frac{2\sqrt3 \cdot 2}{2}=2\sqrt3$. However, we have to subtract off the circular segments. The area of those can be found by computing the area of the circle with radius 2, multiplying it by $\frac{1}{6}$, then finally subtracting the area of an equilateral triangle with a side length 2 from the sector. The sum of the areas of the circular segments is $2(\frac{4 \pi}{6}-\sqrt3).$ The area of rhombus $SRTU$ minus the circular segments is $2\sqrt3-\frac{4 \pi}{3}+2\sqrt3= \boxed{\textbf{(B)}\ 4\sqrt{3}-\frac{4\pi}{3}}.$

~PEKKA

Video Solutions

https://youtu.be/LT4gyH--328

https://youtu.be/wc5rGulTTR8

- Happytwin

https://youtu.be/aE0oAq4Q_Ks

https://euclideanmathcircle.wixsite.com/emc1/videos?wix-vod-video-id=3a7970c3cd01453aa4263a8be7998588&wix-vod-comp-id=comp-kn8844mv

https://youtu.be/sVclz6EmpEU

~savannahsolver

Video Solution by OmegaLearn

https://youtu.be/j3QSD5eDpzU?t=1350

~ pi_is_3.14

See Also

2017 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Last Problem
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png