2018 AIME II Problems/Problem 12

Revision as of 07:37, 24 March 2018 by P groudon (talk | contribs) (Created page with "==Problem== Let <math>ABCD</math> be a convex quadrilateral with <math>AB = CD = 10</math>, <math>BC = 14</math>, and <math>AD = 2\sqrt{65}</math>. Assume that the diagonals...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

Let $ABCD$ be a convex quadrilateral with $AB = CD = 10$, $BC = 14$, and $AD = 2\sqrt{65}$. Assume that the diagonals of $ABCD$ intersect at point $P$, and that the sum of the areas of triangles $APB$ and $CPD$ equals the sum of the areas of triangles $BPC$ and $APD$. Find the area of quadrilateral $ABCD$.

2018 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png