2019 AMC 10B Problems/Problem 16
Problem
In with a right angle at
, point
lies in the interior of
and point
lies in the interior of
so that
and the ratio
. What is the ratio
Solution 1
Without loss of generality, let and
. Let
and
. As
and
are isosceles,
and
. Then
, so
is a
triangle with
.
Then , and
is a
triangle.
In isosceles triangles and
, drop altitudes from
and
onto
; denote the feet of these altitudes by
and
respectively. Then
by AAA similarity, so we get that
, and
. Similarly we get
, and
.
Solution 2
Let , and
. (For this solution,
is above
, and
is to the right of
). Also let
, so
, which implies
. Similarly,
, which implies
. This further implies that
.
Now we see that . Thus
is a right triangle, with side lengths of
,
, and
(by the Pythagorean Theorem, or simply the Pythagorean triple
). Therefore
(by definition),
, and
. Hence
(by the double angle formula), giving
.
By the Law of Cosines in , if
, we have
Now
. Thus the answer is
.
~IronicNinja
Solution 3
Draw a nice big diagram and measure. (Note: this strategy should only be used as a last resort!)
See Also
2019 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 15 |
Followed by Problem 17 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.