2019 AMC 10B Problems/Problem 12

Problem

What is the greatest possible sum of the digits in the base-seven representation of a positive integer less than $2019$?

$\textbf{(A) } 11 \qquad\textbf{(B) } 14 \qquad\textbf{(C) } 22 \qquad\textbf{(D) } 23 \qquad\textbf{(E) } 27$

Solution 1

Observe that $2019_{10} = 5613_7$. To maximize the sum of the digits, we want as many $6$s as possible (since $6$ is the highest value in base $7$), and this will occur with either of the numbers $4666_7$ or $5566_7$. Thus, the answer is $4+6+6+6 = 5+5+6+6 = \boxed{\textbf{(C) }22}$.

~IronicNinja went through this test 100 times

Solution 2

Note that all base $7$ numbers with $5$ or more digits are in fact greater than $2019$. Since the first answer that is possible using a $4$ digit number is $23$, we start with the smallest base $7$ number that whose digits sum to $23$, namely $5666_7$. But this is greater than $2019_{10}$, so we continue by trying $4666_7$, which is less than 2019. So the answer is $\boxed{\textbf{(C) }22}$.

LaTeX code fix by EthanYL

Solution 3

Again note that you want to maximize the number of $6$s to get the maximum sum. Note that $666_7=342_{10}$, so you have room to add a thousands digit base $7$. Fix the $666$ in place and try different thousands digits, to get $4666_7$ as the number with the maximum sum of digits. The answer is $\boxed{\textbf{(C)} 22}$.

~mwu2010

~IceMatrix