2020 AIME I Problems/Problem 14
Note: Please do not post problems here until after the AIME.
Problem
Let be a quadratic polynomial with complex coefficients whose coefficient is Suppose the equation has four distinct solutions, Find the sum of all possible values of
Solution
Either or not. We first see that if it's easy to obtain by Vieta's that . Now, take and WLOG . Now, consider the parabola formed by the graph of . It has vertex . Now, say that . We note . Now, we note by plugging in again. Now, it's easy to find that , yielding a value of . Finally, we add . ~awang11, charmander3333
See Also
2020 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.