1952 AHSME Problems/Problem 39

Revision as of 21:36, 15 April 2020 by Fortytwok (talk | contribs) (Solution)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

If the perimeter of a rectangle is $p$ and its diagonal is $d$, the difference between the length and width of the rectangle is:

$\textbf{(A)}\ \frac {\sqrt {8d^2 - p^2}}{2} \qquad \textbf{(B)}\ \frac {\sqrt {8d^2 + p^2}}{2} \qquad \textbf{(C)}\ \frac{\sqrt{6d^2-p^2}}{2}\qquad\\ \textbf{(D)}\ \frac {\sqrt {6d^2 + p^2}}{2} \qquad \textbf{(E)}\ \frac {8d^2 - p^2}{4}$

Solution

[asy] pair A,B,C,D,E,F,G,H; A=(0,0); B=(10,0); C=(10,5); D=(0,5); E=(5,5.5); F=(5,-0.5); G=(-0.5,2.75); H=(10.5,2.75); draw(A--B--C--D--cycle); draw (B--D); label("$A$",A,SW); label("$B$",B,SE); label("$C$",C,NE); label("$D$",(-0.5,5),N);  label("$x$",E); label("$x$",F); label("$y$",G); label("$y$",H); [/asy] Let the sides of the rectangle be x and y. WLOG, assume x>y. Then, $2x+2y=p \Rightarrow x+y=\frac{p}{2}$.

By pythagorean theorem, $x^2 + y^2 =d^2$.

Since $x+y=\frac{p}{2}$, $(x+y)^2=\frac{p^2}{4} \Rightarrow x^2+2xy+y^2=\frac{p^2}{4}$.

Rearranging to solve for $2xy$ gives $2xy = \frac{p^2}{4}-d^2$.

Rearranging $(x-y)^2$ in terms of the defined variables becomes $(x-y)^2 = d^2 - (\frac{p^2}{4}-d^2)$.

In order to get (x-y), we have to take the square root of the expression and simplify.

$(x-y)=\sqrt{2d^2-\frac{p^2}{4}} \Rightarrow (x-y)=\sqrt{\frac{8d^2-p^2}{4}}$ $\Rightarrow$ $(x-y)=\frac{\sqrt{8d^2+p^2}}{2}$ $\Rightarrow$ $\fbox{A}$.

See also

1952 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 38
Followed by
Problem 40
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png