1964 AHSME Problems/Problem 35

Revision as of 18:20, 18 April 2020 by Einsteinstudent (talk | contribs) (See Also)

Problem

The sides of a triangle are of lengths $13$, $14$, and $15$. The altitudes of the triangle meet at point $H$. if $AD$ is the altitude to the side of length $14$, the ratio $HD:HA$ is:

$\textbf{(A) }3:11\qquad\textbf{(B) }5:11\qquad\textbf{(C) }1:2\qquad\textbf{(D) }2:3\qquad \textbf{(E) }25:33$

See Also

1964 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 34
Followed by
Problem 36
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Using Law of Cosines and the fact that the ratio equals cos(a)/[cos(b)cos(c)] B 5:11