1991 AIME Problems/Problem 9

Revision as of 19:11, 11 March 2007 by Azjps (talk | contribs) (Solution: fmt)

Problem

Suppose that $\sec x+\tan x=\frac{22}7$ and that $\csc x+\cot x=\frac mn,$ where $\frac mn$ is in lowest terms. Find $m+n^{}_{}.$

Solution

Use the two trigonometric Pythagorean identities $\displaystyle 1 + \tan^2 x = \sec^2 x$ and $\displaystyle 1 + \cot^2 x = \csc^2 x$.

If we square $\sec x = \frac{22}{7} - \tan x$, we find that $\sec^2 x = \left(\frac{22}7\right)^2 - 2\left(\frac{22}7\right)\tan x + \tan^2 x$, so $1 = \left(\frac{22}7\right)^2 - \frac{44}7 \tan x$. Solving shows that $\tan x = \frac{435}{308}$.

Call $y = \frac mn$. Rewrite the second equation in a similar fashion: $\displaystyle 1 = y^2 - 2y\cot x$. Substitute in $\cot x = \frac{1}{\tan x} = \frac{308}{435}$ to get a quadratic: $0 = y^2 - \frac{616}{435} - 1$. The quadratic is factorable (though somewhat ugly); $(15y - 29)(29y + 15) = 0$. It turns out that only the positive root will work, so the value of $y = \frac{29}{15}$ and $m + n = 044$.

See also

1991 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions