2020 AIME I Problems/Problem 2

Revision as of 12:52, 14 December 2020 by Thepakistowners (talk | contribs) (Problem)

Problem

Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule! Pakistowners rule!

Solution

Since these form a geometric series, $\frac{\log_2{x}}{\log_4{x}}$ is the common ratio. Rewriting this, we get $\frac{\log_x{4}}{\log_x{2}} = \log_2{4} = 2$ by base change formula. Therefore, the common ratio is 2. Now $\frac{\log_4{x}}{\log_8{2x}} = 2 \implies \log_4{x} = 2\log_8{2} + 2\log_8{x} \implies \frac{1}{2}\log_2{x} = \frac{2}{3} + \frac{2}{3}\log_2{x}$

$\implies -\frac{1}{6}\log_2{x} = \frac{2}{3} \implies \log_2{x} = -4 \implies x = \frac{1}{16}$. Therefore, $1 + 16 = \boxed{017}$.

~ JHawk0224

See here for a video solution:

https://youtu.be/nPL7nUXnRbo

Another video solution:

https://youtu.be/4FvYVfhhTaQ

Video solution (*)

https://youtu.be/FgrIgCyGVUI

Solution 2

If we set $x=2^y$, we can obtain three terms of a geometric sequence through logarithm properties. The three terms are \[\frac{y+1}{3}, \frac{y}{2}, y.\] In a three-term geometric sequence, the middle term squared is equal to the product of the other two terms, so we obtain the following: \[\frac{y^2+y}{3} = \frac{y^2}{4},\] which can be solved to reveal $y = -4$. Therefore, $x = 2^{-4} = \frac{1}{16}$, so our answer is $\boxed{017}$.

-molocyxu

Solution 3

Let $r$ be the common ratio. We have \[r = \frac{\log_4{(x)}}{\log_8{(2x)}} = \frac{\log_2{(x)}}{\log_4{(x)}}\] Hence we obtain \[(\log_4{(x)})(\log_4{(x)}) = (\log_8{(2x)})(\log_2{(x)})\] Ideally we change everything to base $64$ and we can get: \[(\log_{64}{(x^3)})(\log_{64}{(x^3)}) = (\log_{64}{(x^6)})(\log_{64}{(4x^2)})\] Now divide to get: \[\frac{\log_{64}{(x^3)}}{\log_{64}{(4x^2)}} = \frac{\log_{64}{(x^6)}}{\log_{64}{(x^3)}}\] By change-of-base we obtain: \[\log_{(4x^2)}{(x^3)} = \log_{(x^3)}{(x^6)} = 2\] Hence $(4x^2)^2 = x^3 \rightarrow 16x^4 = x^3 \rightarrow x = \frac{1}{16}$ and we have $1+16 = \boxed{017}$ as desired.

~skyscraper

Solution 4 (Exponents > Logarithms)

Let $r$ be the common ratio, and let $a$ be the starting term ($a=\log_{8}{(2x)}$). We then have: \[\log_{8}{(2x)}=a, \log_{4}{(x)}=ar, \log_{2}{(x)}=ar^2\] Rearranging these equations gives: \[8^a=2x, 4^{ar}=x, 2^{ar^2}=x\] Deal with the last two equations first: Setting them equal gives: \[4^{ar}=2^{ar^2} \implies 2^{2ar}=2^{ar^2} \implies 2ar=ar^2 \implies r=2\] Using this value of $r$, substitute into the first and second equations (or the first and third, it doesn't really matter) to get: \[8^a=2x, 4^{2a}=x\] Changing these to a common base gives: \[2^{3a}=2x, 2^{4a}=x\] Dividing the first equation by 2 on both sides yields: \[2^{3a-1}=x\] Setting these equations equal to each other and removing the exponent again gives: \[3a-1=4a \implies a=-1\] Substituting this back into the first equation gives: \[8^{-1}=2x \implies 2x=\frac{1}{8} \implies x=\frac{1}{16}\] Therefore, $m+n=1+16=\boxed{017}$

~IAmTheHazard

Solution 5

We can relate the logarithms as follows:

\[\frac{\log_4{x}}{\log_8{(2x)}}=\frac{\log_2{x}}{\log_4{x}}\] \[\log_8{(2x)}\log_2{x}=\log_4{x}\log_4{x}\]

Now we can convert all logarithm bases to $2$ using the identity $\log_a{b}=\log_{a^c}{b^c}$:

\[\log_2{\sqrt[3]{2x}}\log_2{x}=\log_2{\sqrt{x}}\log_2{\sqrt{x}}\]

We can solve for $x$ as follows:

\[\frac{1}{3}\log_2{(2x)}\log_2{x}=\frac{1}{4}\log_2{x}\log_2{x}\] \[\frac{1}{3}\log_2{(2x)}=\frac{1}{4}\log_2{x}\] \[\frac{1}{3}\log_2{2}+\frac{1}{3}\log_2{x}=\frac{1}{4}\log_2{x}\] We get $x=\frac{1}{16}$. Verifying that the common ratio is positive, we find the answer of $\boxed{017}$.

~QIDb602


Solution 6

If the numbers are in a geometric sequence, the middle term must be the geometric mean of the surrounding terms. We can rewrite the first two logarithmic expressions as $\frac{1+\log_2{x}}{3}$ and $\frac{1}{2}\log_2{x}$, respectively. Therefore: \[\frac{1}{2}\log_2{x}=\sqrt{\left(\frac{1+\log_2{x}}{3}\right)\left(\log_2{x}\right)}\] Let $n=\log_2{x}$. We can rewrite the expression as: \[\frac{n}{2}=\sqrt{\frac{n(n+1)}{3}}\] \[\frac{n^2}{4}=\frac{n(n+1)}{3}\] \[4n(n+1)=3n^2\] \[4n^2+4n=3n^2\] \[n^2+4n=0\] \[n(n+4)=0\] \[n=0 \text{ and } -4\] Zero does not work in this case, so we consider $n=-4$: $\log_2{x}=-4 \rightarrow x=\frac{1}{16}$. Therefore, $1+16=\boxed{017}$.

~Bowser498

Solution 7 (Official MAA)

By the Change of Base Formula the common ratio of the progression is\[\frac{\log_2 x}{\log_4 x} = \frac{\hphantom{m}\log_2x\hphantom{m}}{\frac{\log_2x}{\log_24}} = 2.\]Hence $x$ must satisfy\[2=\frac{\log_4 x}{\log_8 (2x)}= \frac{\log_2 x}{\log_2 4} \div \frac{\log_2(2x)}{\log_28} = \frac 32\cdot \frac{\log_2x}{1+\log_2x}.\]This is equivalent to $4 + 4\log_2x = 3\log_2x$. Hence $\log_2x = -4$ and $x = \frac{1}{16}$. The requested sum is $1+16 = 17$. See here for a video solution:

https://youtu.be/nPL7nUXnRbo


Video Solution

https://youtu.be/mgRNqSDCvgM?t=281s

See Also

2020 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png