2020 AMC 10B Problems/Problem 16

Revision as of 21:03, 3 November 2021 by Puffer13 (talk | contribs) (Solution 2 (Guessing))
The following problem is from both the 2020 AMC 10B #16 and 2020 AMC 12B #14, so both problems redirect to this page.

Problem

Bela and Jenn play the following game on the closed interval $[0, n]$ of the real number line, where $n$ is a fixed integer greater than $4$. They take turns playing, with Bela going first. At his first turn, Bela chooses any real number in the interval $[0, n]$. Thereafter, the player whose turn it is chooses a real number that is more than one unit away from all numbers previously chosen by either player. A player unable to choose such a number loses. Using optimal strategy, which player will win the game?

$\textbf{(A)} \text{ Bela will always win.} \qquad \textbf{(B)} \text{ Jenn will always win.} \qquad \textbf{(C)} \text{ Bela will win if and only if }n \text{ is odd.}$ $\textbf{(D)} \text{ Jenn will win if and only if }n \text{ is odd.} \qquad \textbf{(E)} \text { Jenn will win if and only if } n>8.$

Solution 1

If Bela selects the middle number in the range $[0, n]$ and then mirror whatever number Jenn selects, then if Jenn can select a number within the range, so can Bela. Jenn will always be the first person to run out of a number to choose, so the answer is $\boxed{\textbf{(A)} \text{ Bela will always win}}$.

Video Solution

https://youtu.be/3BvJeZU3T-M (for AMC 10) https://youtu.be/0xgTR3UEqbQ (for AMC 12)

~IceMatrix

See Also

2020 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 15
Followed by
Problem 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2020 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png