2019 AIME II Problems/Problem 15
Contents
[hide]Problem
In acute triangle points
and
are the feet of the perpendiculars from
to
and from
to
, respectively. Line
intersects the circumcircle of
in two distinct points,
and
. Suppose
,
, and
. The value of
can be written in the form
where
and
are positive integers, and
is not divisible by the square of any prime. Find
.
Diagram
Solution 1
First we have , and
by PoP. Similarly,
and dividing these each by
gives
.
It is known that the sides of the orthic triangle are , and its angles are
,
, and
. We thus have the three sides of the orthic triangle now.
Letting
be the foot of the altitude from
, we have, in
,
similarly, we get
To finish,
The requested sum is .
༺\ crazyeyemoody9❂7 //༻
Solution 2
Let ,
, and
. Let
. Then
and
.
By Power of a Point theorem,
Thus
. Then
,
, and
Use the Law of Cosines in
to get
, which rearranges to
Upon simplification, this reduces to a linear equation in
, with solution
. Then
So the final answer is
By SpecialBeing2017
Solution 3
Let and
By power of point, we have
and
Therefore, substituting in the values:
Notice that quadrilateral is cyclic.
From this fact, we can deduce that and
Therefore is similar to
.
Therefore:
Now using Law of Cosines on we get:
Notice
Substituting and Simplifying:
Now we solve for using regular algebra which actually turns out to be very easy.
We get and from the above relations between the variables we quickly determine
,
and
Therefore
So the answer is
By asr41
Solution 4 (Clean)
This solution is directly based of @CantonMathGuy's solution. We start off with a key claim.
Claim. and
.
Proof. Let and
denote the reflections of the orthocenter over points
and
, respectively. Since
and
, we have that
is a rectangle. Then, since
we obtain
(which directly follows from
being cyclic); hence
, or
. Similarly, we can obtain
.
A direct result of this claim is that . Thus, we can set
and
, then applying Power of a Point on
we get
. Also, we can set
and
and once again applying Power of a Point (but this time to
) we get
. Hence,
and the answer is
. ~rocketsri
See Also
2019 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Last Question | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.