2022 AIME II Problems/Problem 4

Revision as of 13:31, 18 February 2022 by Stevenyiweichen (talk | contribs)

Problem

There is a positive real number $x$ not equal to either $\tfrac{1}{20}$ or $\tfrac{1}{2}$ such that\[\log_{20x} (22x)=\log_{2x} (202x).\]The value $\log_{20x} (22x)$ can be written as $\log_{10} (\tfrac{m}{n})$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

Solution 1

We could assume a variable $v$ which equals to both $\log_{20x} (22x)$ and $\log_{2x} (202x)$.

So that $(20x)^v=22x \textcircled{1}$ and $(2x)^v=202x \textcircled{2}$

Express $\textcircled{1}$ as: $(20x)^v=(2x \cdot 10)^v=(2x)^v \cdot (10^v)=22x \textcircled{3}$

Substitute $\textcircled{2}$ to $\textcircled{3}$: $202x \cdot (10^v)=22x$

Thus, $v=\log_{10} (\frac{22x}{202x})= \log_{10} (\frac{11}{101})$, where $m=11$ and $n=101$.

Therefore, $m+n = \boxed{112}$.

~DSAERF-CALMIT (https://binaryphi.site)

Solution 2

We have \begin{align*} \log_{20x} (22x) & = \frac{\log_k 22x}{\log_k 20x} \\ & = \frac{\log_k x + \log_k 22}{\log_k x + \log_k 20} . \end{align*}

We have \begin{align*} \log_{2x} (202x) & = \frac{\log_k 202x}{\log_k 2x} \\ & = \frac{\log_k x + \log_k 202 }{\log_k x + \log_k 2} . \end{align*}

Because $\log_{20x} (22x)=\log_{2x} (202x)$, we get \[ \frac{\log_k x + \log_k 22}{\log_k x + \log_k 20} = \frac{\log_k x + \log_k 202 }{\log_k x + \log_k 2} . \]

We denote this common value as $\lambda$.

By solving the equality $\frac{\log_k x + \log_k 22}{\log_k x + \log_k 20} = \lambda$, we get $\log_k x = \frac{\log_k 22 - \lambda \log_k 20}{\lambda - 1}$.

By solving the equality $\frac{\log_k x + \log_k 202 }{\log_k x + \log_k 2} = \lambda$, we get $\log_k x = \frac{\log_k 202 - \lambda \log_k 2}{\lambda - 1}$.

By equating these two equations, we get \[ \frac{\log_k 22 - \lambda \log_k 20}{\lambda - 1} = \frac{\log_k 202 - \lambda \log_k 2}{\lambda - 1} . \]

Therefore, \begin{align*} \log_{20x} (22x) & = \lambda \\ & = \frac{\log_k 22 - \log_k 202}{\log_k 20 - \log_k 2} \\ & = \frac{\log_k \frac{11}{101}}{\log_k 10} \\ & = \log_{10} \frac{11}{101} . \end{align*}

Therefore, the answer is $11 + 101 = \boxed{\textbf{(112) }}$.

~Steven Chen (www.professorchenedu.com)

See Also

2022 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png