2022 AIME II Problems/Problem 6
Revision as of 04:57, 19 February 2022 by Isabelchen (talk | contribs)
Problem
Let be real numbers such that and . Among all such -tuples of numbers, the greatest value that can achieve is , where and are relatively prime positive integers. Find .
Solution 1
To find the greatest value of , must be as large as possible, and must be as small as possible. If is as large as possible, . If is as small as possible, . The other numbers between and equal to . Substituting and into and we get: ,
.
See Also
2022 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 5 |
Followed by Problem 7 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.