1991 AIME Problems/Problem 12
Problem
Rhombus is inscribed in rectangle so that vertices , , , and are interior points on sides , , , and , respectively. It is given that , , , and . Let , in lowest terms, denote the perimeter of . Find .
Solution
Let be the center of the rhombus. Via parallel sides and alternate interior angles, we see that the opposite triangles are congruent (, ). Quickly we realize that is also the center of the rectangle.
By the Pythagorean Theorem, we can solve for a side of the rhombus; . Since the diagonals of a rhombus are perpendicular bisectors, we have that . Also, , so quadrilateral is cyclic. By Ptolemy's Theorem, .
By similar logic, we have is a cyclic quadrilateral. Let , . The Pythagorean Theorem gives us . Ptolemy’s Theorem gives us . Since the diagonals of a rectangle are equal, , and . Solving for , we get . Substituting into ,
We reject because then everything degenerates into squares, but the condition that gives us a contradiction. Thus , and backwards solving gives . The perimeter of is , and .
See also
1991 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 11 |
Followed by Problem 13 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |