1958 AHSME Problems/Problem 36

Revision as of 00:15, 29 January 2023 by Megaboy6679 (talk | contribs) (Solution)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

The sides of a triangle are $30$, $70$, and $80$ units. If an altitude is dropped upon the side of length $80$, the larger segment cut off on this side is:

$\textbf{(A)}\ 62\qquad  \textbf{(B)}\ 63\qquad  \textbf{(C)}\ 64\qquad  \textbf{(D)}\ 65\qquad  \textbf{(E)}\ 66$

Solution

Let the shorter segment be $x$ and the altitude be $y$. The larger segment is then $80-x$. By the Pythagorean Theorem , \[30^2-y^2=x^2 \qquad(1)\] and \[(80-x)^2=70^2-y^2 \qquad(2)\] Adding $(1)$ and $(2)$ and simplifying gives $x=15$. Therefore, the answer is $80-15=\boxed{\textbf{(D)}~65}$

~megaboy6679

See Also

1958 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 35
Followed by
Problem 37
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png