2022 AIME II Problems/Problem 11

Revision as of 11:58, 7 February 2023 by Jacob3abraham (talk | contribs) (Solution 1)

Problem

Let $ABCD$ be a convex quadrilateral with $AB=2$, $AD=7$, and $CD=3$ such that the bisectors of acute angles $\angle{DAB}$ and $\angle{ADC}$ intersect at the midpoint of $\overline{BC}$. Find the square of the area of $ABCD$.

Vishal is gay

Solution 2

Denote by $M$ the midpoint of segment $BC$. Let points $P$ and $Q$ be on segment $AD$, such that $AP = AB$ and $DQ = DC$.

Denote $\angle DAM = \alpha$, $\angle BAD = \beta$, $\angle BMA = \theta$, $\angle CMD = \phi$.

Denote $BM = x$. Because $M$ is the midpoint of $BC$, $CM = x$.

Because $AM$ is the angle bisector of $\angle BAD$ and $AB = AP$, $\triangle BAM \cong \triangle PAM$. Hence, $MP = MB$ and $\angle AMP = \theta$. Hence, $\angle MPD = \angle MAP + \angle PMA = \alpha + \theta$.

Because $DM$ is the angle bisector of $\angle CDA$ and $DC = DQ$, $\triangle CDM \cong \triangle QDM$. Hence, $MQ = MC$ and $\angle DMQ = \phi$. Hence, $\angle MQA = \angle MDQ + \angle QMD = \beta + \phi$.

Because $M$ is the midpoint of segment $BC$, $MB = MC$. Because $MP = MB$ and $MQ = MC$, $MP = MQ$.

Thus, $\angle MPD = \angle MQA$.

Thus, \[ \alpha + \theta = \beta + \phi . \hspace{1cm} (1) \]

In $\triangle AMD$, $\angle AMD = 180^\circ - \angle MAD - \angle MDA = 180^\circ - \alpha - \beta$. In addition, $\angle AMD = 180^\circ - \angle BMA - \angle CMD = 180^\circ - \theta - \phi$. Thus, \[ \alpha + \beta = \theta + \phi . \hspace{1cm} (2) \]

Taking $(1) + (2)$, we get $\alpha = \phi$. Taking $(1) - (2)$, we get $\beta = \theta$.

Therefore, $\triangle ADM \sim \triangle AMB \sim \triangle MDC$.

Hence, $\frac{AD}{AM} = \frac{AM}{AB}$ and $\frac{AD}{DM} = \frac{DM}{CD}$. Thus, $AM = \sqrt{AD \cdot AD} = \sqrt{14}$ and $DM = \sqrt{AD \cdot CD} = \sqrt{21}$.

In $\triangle ADM$, by applying the law of cosines, $\cos \angle AMD  = \frac{AM^2 + DM^2 - AD^2}{2 AM \cdot DM} = - \frac{1}{\sqrt{6}}$. Hence, $\sin \angle AMD = \sqrt{1 - \cos^2 \angle AMD} = \frac{\sqrt{5}}{\sqrt{6}}$. Hence, ${\rm Area} \ \triangle ADM = \frac{1}{2} AM \cdot DM \dot \sin \angle AMD = \frac{7 \sqrt{5}}{2}$.

Therefore, \begin{align*} {\rm Area} \ ABCD & = {\rm Area} \ \triangle AMD + {\rm Area} \ \triangle ABM + {\rm Area} \ \triangle MCD \\ & = {\rm Area} \ \triangle AMD \left( 1 + \left( \frac{AM}{AD} \right)^2 + \left( \frac{MD}{AD} \right)^2 \right) \\ & = 6 \sqrt{5} . \end{align*}

Therefore, the square of ${\rm Area} \ ABCD$ is $\left( 6 \sqrt{5} \right)^2 = \boxed{\textbf{(180) }}$.

~Steven Chen (www.professorchenedu.com)

Solution 3 (Visual)

AIME-II-2022-11a.png

Claim

In the triangle $ABC, AB = 2AC, M$ is the midpoint of $AB. D$ is the point of intersection of the circumcircle and the bisector of angle $A.$ Then $DM = BD.$

Proof

Let $A = 2\alpha.$ Then $\angle DBC = \angle DCB = \alpha.$

Let $E$ be the intersection point of the perpendicular dropped from $D$ to $AB$ with the circle.

Then the sum of arcs $\overset{\Large\frown} {BE} + \overset{\Large\frown}{AC} + \overset{\Large\frown}{CD} = 180^\circ.$ \[\overset{\Large\frown} {BE} = 180^\circ – 2\alpha – \overset{\Large\frown}{AC}.\]

Let $E'$ be the point of intersection of the line $CM$ with the circle. $CM$ is perpendicular to $AD, \angle AMC = 90^\circ – \alpha,$ the sum of arcs $\overset{\Large\frown}{A}C +  \overset{\Large\frown}{BE'} = 180^\circ – 2\alpha \implies E'$ coincides with $E.$

The inscribed angles $\angle DEM = \angle DEB, M$ is symmetric to $B$ with respect to $DE, DM = DB.$

Solution

AIME-II-2022-11b.png

Let $AB' = AB, DC' = DC, B'$ and $C'$ on $AD.$

Then $AB' = 2, DC' = 3, B'C' = 2 = AB'.$

Quadrilateral $ABMC'$ is cyclic. Let $\angle A = 2\alpha.$ Then $\angle MBC' = \angle MC'B = \alpha.$

Circle $BB'C'C$ centered at $M, BC$ is its diameter, $\angle BC'C = 90^\circ.$ $\angle DMC' = \angle MC'B,$ since they both complete $\angle MC'C$ to $90^\circ.$

$\angle MB'A = \angle MC'D,$ since they are the exterior angles of an isosceles $\triangle MB'C'.$ $\triangle AMB' \sim \triangle MDC'$ by two angles. $\frac {AB'}{MC'} = \frac {MB'}{DC'}, MC' =\sqrt{AB' \cdot C'D} = \sqrt{6}.$

The height dropped from $M$ to $AD$ is $\sqrt{MB'^2 - (\frac{B'C'}{2})^2} =\sqrt{6 - 1} = \sqrt{5}.$

The areas of triangles $\triangle AMB'$ and $\triangle MC'B'$ are equal to $\sqrt{5},$ area of $\triangle MC'D$ is $\frac{3}{2} \sqrt{5}.$

\[\triangle AMB' = \triangle AMB, \triangle MC'D = \triangle MCD \implies\] The area of $ABCD$ is $(1 + 2 + 3) \sqrt{5} = 6\sqrt{5} \implies 6^2 \cdot 5 = \boxed{180}.$

vladimir.shelomovskii@gmail.com, vvsss

Video Solution by The Power of Logic

https://youtu.be/giLyWHKFr1I

See Also

2022 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png