2012 AMC 8 Problems/Problem 15

Revision as of 15:31, 16 November 2024 by Nxc (talk | contribs) (Solution)

Problem

The smallest number greater than 2 that leaves a remainder of 2 when divided by 3, 4, 5, or 6 lies between what numbers?

$\textbf{(A)}\hspace{.05in}40\text{ and }50\qquad\textbf{(B)}\hspace{.05in}51\text{ and }55\qquad\textbf{(C)}\hspace{.05in}56\text{ and }60\qquad\textbf{(D)}\hspace{.05in}61\text{ and }65\qquad\textbf{(E)}\hspace{.05in}66\text{ and }99$

Video Solution

https://youtu.be/rQUwNC0gqdg?t=172

https://www.youtube.com/watch?v=Vfsb4nwvopU ~David

https://youtu.be/hOnw5UtBSqI ~savannahsolver

Solution

To find the answer to this problem, we need to find the least common multiple of $3$, $4$, $5$, $6$ and add $2$ to the result. To calculate the least common multiple, we need to find the prime factorization for each of them. $3 = 3^{1}$, $4 = 2^{2}$, $5 = 5^{1}$, and $6 = 2^{1}*{3^{1}}$. So the least common multiple of the four numbers is $2^{2}*{3^{1}*{5^{1}}} = 60$, and by adding $2$, we find that that such number is $62$. Now we need to find the only given range that contains $62$. The only such range is answer $\textbf{(D)}$, and so our final answer is $\boxed{\textbf{(D)}\ 61\text{ and }65}$.

~NXC

See Also

2012 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png