2005 AMC 10B Problems
Contents
- 1 Problem 1
- 2 Problem 2
- 3 Problem 3
- 4 Problem 4
- 5 Problem 5
- 6 Problem 7
- 7 Problem 8
- 8 Problem 9
- 9 Problem 10
- 10 Problem 11
- 11 Problem 12
- 12 Problem 13
- 13 Problem 14
- 14 Problem 15
- 15 Problem 16
- 16 Problem 17
- 17 Problem 18
- 18 Problem 19
- 19 Problem 20
- 20 Problem 21
- 21 Problem 22
- 22 Problem 23
- 23 Problem 24
- 24 Problem 25
- 25 See also
Problem 1
A scout troop buys candy bars at a price of five for $. They sell all the candy bars at a price of two for $. What was the profit, in dollars?
Problem 2
A positive number has the property that of is . What is ?
Problem 3
A gallon of paint is used to paint a room. One third of the paint is used on the first day. On the second day, one third of the remaining paint is used. What fraction of the original amount of paint is available to use on the third day?
Problem 4
For real numbers and , define . What is the value of
?
Problem 5
Brianna is using part of the money she earned on her weekend job to buy several equally-priced CDs. She used one fifth of her money to buy one third of the CDs. What fraction of her money will she have left after she buys all the CDs?
- REDIRECT2005 AMC 12B Problems/Problem 4
Problem 7
A circle is inscribed in a square, then a square is inscribed in this circle, and finally, a circle is inscribed in this square. What is the ratio of the area of the smaller circle to the area of the larger square?
Problem 8
Problem 9
One fair die has faces , , , , , and another has faces , , , , , . The dice are rolled and the numbers on the top faces are added. What is the probability that the sum will be odd?
Problem 10
In , we have and . Suppose that is a point on line such that lies between and and . What is ?
Problem 11
The first term of a sequence is . Each succeeding term is the sum of the cubes of the digits of the previous term. What is the term of the sequence?
Problem 12
Twelve fair dice are rolled. What is the probability that the product of the numbers on the top faces is prime?
Problem 13
How many numbers between and are integer multiples of or but not ?
Problem 14
Problem 15
An envelope contains eight bills: ones, fives, tens, and twenties. Two bills are drawn at random without replacement. What is the probability that their sum is or more?
Problem 16
The quadratic equation has roots that are twice those of , and none of , , and is zero. What is the value of ?
Problem 17
Suppose that , , , and . What is ?
Problem 18
All of David's telephone numbers have the form , where , , , , , , and are distinct digits and in increasing order, and none is either or . How many different telephone numbers can David have?
Problem 19
On a certain math exam, of the students got points, got points, got points, got points, and the rest got points. What is the difference between the mean and the median score on this exam?
Problem 20
What is the average (mean) of all -digit numbers that can be formed by using each of the digits , , , , and exactly once?
Problem 21
Forty slips are placed into a hat, each bearing a number , , , , , , , , , or , with each number entered on four slips. Four slips are drawn from the hat at random and without replacement. Let be the probability that all four slips bear the same number. Let be the probability that two of the slips bear a number and the other two bear a number . What is the value of ?
Problem 22
For how many positive integers less than or equal to is evenly divisible by ?
Problem 23
In trapezoid we have parallel to , as the midpoint of , and as the midpoint of . The area of is twice the area of . What is ?
Problem 24
Let and be two-digit integers such that is obtained by reversing the digits of . The integers and satisfy for some positive integer . What is ?
Problem 25
A subset of the set of integers from to , inclusive, has the property that no two elements of sum to . What is the maximum possible number of elements in ?