1974 AHSME Problems/Problem 20

Revision as of 20:03, 26 May 2012 by Admin25 (talk | contribs) (Created page with "==Problem== Let <cmath> T=\frac{1}{3-\sqrt{8}}-\frac{1}{\sqrt{8}-\sqrt{7}}+\frac{1}{\sqrt{7}-\sqrt{6}}-\frac{1}{\sqrt{6}-\sqrt{5}}+\frac{1}{\sqrt{5}-2}. </cmath> Then <math> \...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

Let

\[T=\frac{1}{3-\sqrt{8}}-\frac{1}{\sqrt{8}-\sqrt{7}}+\frac{1}{\sqrt{7}-\sqrt{6}}-\frac{1}{\sqrt{6}-\sqrt{5}}+\frac{1}{\sqrt{5}-2}.\] (Error making remote request. Unexpected URL sent back)

Then

$\mathrm{(A)\ } T<1 \qquad \mathrm{(B) \ }T=1 \qquad \mathrm{(C) \  } 1<T<2 \qquad \mathrm{(D) \  } T>2 \qquad$

$\mathrm{(E) \  }T=\frac{1}{(3-\sqrt{8})(\sqrt{8}-\sqrt{7})(\sqrt{7}-\sqrt{6})(\sqrt{6}-\sqrt{5})(\sqrt{5}-2)}$

Solution

Let's try to rationalize $\frac{1}{\sqrt{n+1}-\sqrt{n}}$. Multiplying the numerator and denominator by $\sqrt{n+1}+\sqrt{n}$ gives us $\frac{1}{\sqrt{n+1}-\sqrt{n}}=\sqrt{n+1}+\sqrt{n}$.

Therefore,

\[T=(3+\sqrt{8})-(\sqrt{8}+\sqrt{7})+(\sqrt{7}+\sqrt{6})-(\sqrt{6}+\sqrt{5})+(\sqrt{5}+2)=5.\]

Hence the answer is $\boxed{\text{D}}$.

See Also

1974 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions