2001 USAMO Problems/Problem 3
Revision as of 12:37, 4 July 2013 by Nathan wailes (talk | contribs)
Problem
Let and satisfy
Show that
Solution
First we prove the lower bound.
Note that we cannot have all greater than 1. Therefore, suppose . Then
Now, without loss of generality, we assume that and are either both greater than 1 or both less than one, so . From the given equation, we can express in terms of and as
Thus,
From the Cauchy-Schwarz Inequality,
This completes the proof.
See also
2001 USAMO (Problems • Resources) | ||
Preceded by Problem 2 |
Followed by Problem 4 | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAMO Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.