1952 AHSME Problems/Problem 19

Revision as of 20:15, 9 January 2014 by Throwaway1489 (talk | contribs) (Created page with "== Problem== Angle <math> B </math> of triangle <math> ABC </math> is trisected by <math> BD </math> and <math> BE </math> which meet <math> AC </math> at <math> D </math> and <...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

Angle $B$ of triangle $ABC$ is trisected by $BD$ and $BE$ which meet $AC$ at $D$ and $E$ respectively. Then:

$\textbf{(A) \ }\frac{AD}{EC}=\frac{AE}{DC}  \qquad \textbf{(B) \ }\frac{AD}{EC}=\frac{AB}{BC} \qquad \textbf{(C) \ }\frac{AD}{EC}=\frac{BD}{BE} \qquad$

$\textbf{(D) \ }\frac{AD}{EC}=\frac{(AB)(BD)}{(BE)(BC)} \qquad \textbf{(E) \ }\frac{AD}{EC}=\frac{(AE)(BD)}{(DC)(BE)}$

Solution

[asy] import olympiad; pair A=(0,0), B=(3,3), C=(6,0), D=(2,0), E=(4,0); dot(A); dot(B); dot(C); dot(D); dot(E); label("$A$",A,W); label("$B$",B,N); label("$C$",(5.5,0),E); label("$D$",D,S); label("$E$",E,S); draw(A--B--C--cycle); draw(B--D); draw(B--E); markscalefactor=0.1; draw(anglemark(A,B,D)); draw(anglemark(D,B,E)); draw(anglemark(E,B,C)); [/asy] Using the Angle Bisector Theorem on $\angle ABE$ and $\angle DBC$, we find that $\frac{AD}{DE}=\frac{AB}{BE}$ and $\frac{DE}{EC}=\frac{BD}{BC}$. Rewriting this to better fit our answer choices gives $AD=\frac{(DE)(AB)}{BE}$ and $EC=\frac{(DE)(BC)}{BD}$. Hence, $\frac{AD}{EC}=\frac{(DE)(AB)}{BE}\cdot \frac{BD}{(DE)(BC)}\implies \boxed{\textbf{(D)}\ \frac{AD}{EC}=\frac{(AB)(BD)}{(BE)(BC)}}$.

See also

1952 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png