1952 AHSME Problems/Problem 21

Revision as of 16:34, 20 January 2014 by Throwaway1489 (talk | contribs) (Created page with "== Problem== The sides of a regular polygon of <math> n </math> sides, <math> n>4 </math>, are extended to form a star. The number of degrees at each point of the star is: <mat...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

The sides of a regular polygon of $n$ sides, $n>4$, are extended to form a star. The number of degrees at each point of the star is:

$\textbf{(A) \ }\frac{360}{n}  \qquad \textbf{(B) \ }\frac{(n-4)180}{n} \qquad \textbf{(C) \ }\frac{(n-2)180}{n} \qquad$

$\textbf{(D) \ }180-\frac{90}{n} \qquad \textbf{(E) \ }\frac{180}{n}$

Solution

[asy] import olympiad; pair A,B,C,D,E; A=(-1.5,1.5sqrt(3)); B=(-4.5,1.5sqrt(3)); C=origin; D=(1.5,1.5sqrt(3)); E=3*dir(-120); draw(A--D,dashed); draw(D--E,dashed); draw(B--A--C--E); markscalefactor=0.075; draw(anglemark(C,A,D)); draw(anglemark(D,C,A)); [/asy]

The measure of each angle, in degrees, of an $n$-sided regular polygon is $\frac{(n-2)180}{n}$. Hence, the two base angles of each triangle formed measure $180-\frac{(n-2)180}{n}$ degrees, and the vertex angle measures $180-2\left(180-\frac{(n-2)180}{n}\right)$ degrees. This simplifies to $\frac{180n-720}{n}$, or $\boxed{\textbf{(B)}\ \frac{(n-4)180}{n}}$.

See also

1952 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png