1992 AHSME Problems

Revision as of 01:23, 28 September 2014 by Timneh (talk | contribs) (Created page with "== Problem 1 == If <math>3(4x+\pi)=P</math> then <math>6(8x+10\pi)=</math> <math>\text{(A) } 2P\quad \text{(B) } 3P\quad \text{(C) } 6P\quad \text{(D) } 8P\quad \text{(E) } 18P...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem 1

If $3(4x+\pi)=P$ then $6(8x+10\pi)=$

$\text{(A) } 2P\quad \text{(B) } 3P\quad \text{(C) } 6P\quad \text{(D) } 8P\quad \text{(E) } 18P$

Solution

Problem 2

An urn is filled with coins and beads, all of which are either silver or gold. Twenty percent of the objects in the urn are beads. Forty percent of the coins in the urn are silver. What percent of objects in the urn are gold coins?

$\text{(A) } 40\%\quad \text{(B) } 48\%\quad \text{(C) } 52\%\quad \text{(D) } 60\%\quad \text{(E) } 80\%$

Solution

Problem 3

If $m>0$ and the points $(m,3)$ and $(1,m)$ lie on a line with slope $m$, then $m=$

$\text{(A) } 1\quad \text{(B) } \sqrt{2}\quad \text{(C) } \sqrt{3}\quad \text{(D) } 2\quad \text{(E) } \sqrt{5}$

Solution

Problem 4

If $a,b$ and $c$ are positive integers and $a$ and $b$ are odd, then $3^a+(b-1)^2c$ is

$\text{(A) odd for all choices of c} \quad \text{(B) even for all choices of c} \quad\\ \text{(C) odd if c is even; even if c is odd} \quad\\ \text{(D) odd if c is odd; even if c is even} \quad\\ \text{(E) odd if c is not a multiple of 3;evn if c is a multiple of 3}$ Solution

Problem 5

$6^6+6^6+6^6+6^6+6^6+6^6=$

$\text{(A) } 6^6 \quad \text{(B) } 6^7\quad \text{(C) } 36^6\quad \text{(D) } 6^{36}\quad \text{(E) } 36^{36}$ Solution

Problem 6

If $x>y>0$ , then $\frac{x^y y^x}{y^y x^x}=$


$\text{(A) } (x-y)^{y/x}\quad \text{(B) } \left(\frac{x}{y}\right)^{x-y}\quad \text{(C) } 1\quad \text{(D) } \left(\frac{x}{y}\right)^{y-x}\quad \text{(E) } (x-y)^{x/y}$ Solution

Problem 7

The ratio of $w$ to $x$ is $4:3$, of $y$ to $z$ is $3:2$ and of $z$ to $x$ is $1:6$. What is the ratio of $w$ to $y$?

$\text{(A) } 1:3\quad \text{(B) } 16:3\quad \text{(C) } 20:3\quad \text{(D) } 27:4\quad \text{(E) } 12:1$

Solution

Problem 8

[asy] draw((-10,-10)--(-10,10)--(10,10)--(10,-10)--cycle,dashed+linewidth(.75)); draw((-7,-7)--(-7,7)--(7,7)--(7,-7)--cycle,dashed+linewidth(.75)); draw((-10,-10)--(10,10),dashed+linewidth(.75)); draw((-10,10)--(10,-10),dashed+linewidth(.75)); fill((10,10)--(10,9)--(9,9)--(9,10)--cycle,black); fill((9,9)--(9,8)--(8,8)--(8,9)--cycle,black); fill((8,8)--(8,7)--(7,7)--(7,8)--cycle,black); fill((-10,-10)--(-10,-9)--(-9,-9)--(-9,-10)--cycle,black); fill((-9,-9)--(-9,-8)--(-8,-8)--(-8,-9)--cycle,black); fill((-8,-8)--(-8,-7)--(-7,-7)--(-7,-8)--cycle,black); fill((10,-10)--(10,-9)--(9,-9)--(9,-10)--cycle,black); fill((9,-9)--(9,-8)--(8,-8)--(8,-9)--cycle,black); fill((8,-8)--(8,-7)--(7,-7)--(7,-8)--cycle,black); fill((-10,10)--(-10,9)--(-9,9)--(-9,10)--cycle,black); fill((-9,9)--(-9,8)--(-8,8)--(-8,9)--cycle,black); fill((-8,8)--(-8,7)--(-7,7)--(-7,8)--cycle,black); [/asy]

A square floor is tiled with congruent square tiles. The tiles on the two diagonals of the floor are black. The rest of the tiles are white. If there are 101 black tiles, then the total number of tiles is

$\text{(A) } 121\quad \text{(B) } 625\quad \text{(C) } 676\quad \text{(D) } 2500\quad \text{(E) } 2601$


Solution

Problem 9

[asy] draw((-7,0)--(7,0),black+linewidth(.75)); draw((-3*sqrt(3),0)--(-2*sqrt(3),3)--(-sqrt(3),0)--(0,3)--(sqrt(3),0)--(2*sqrt(3),3)--(3*sqrt(3),0),black+linewidth(.75)); draw((-2*sqrt(3),0)--(-1*sqrt(3),3)--(0,0)--(sqrt(3),3)--(2*sqrt(3),0),black+linewidth(.75)); [/asy]

Five equilateral triangles, each with side $2\sqrt{3}$, are arranged so they are all on the same side of a line containing one side of each vertex. Along this line, the midpoint of the base of one triangle is a vertex of the next. The area of the region of the plane that is covered by the union of the five triangular regions is

$\text{(A) 10} \quad \text{(B) } 12\quad \text{(C) } 15\quad \text{(D) } 10\sqrt{3}\quad \text{(E) } 12\sqrt{3}$

Solution

Problem 10

The number of positive integers $k$ for which the equation \[kx-12=3k\] has an integer solution for $x$ is

$\text{(A) } 3\quad \text{(B) } 4\quad \text{(C) } 5\quad \text{(D) } 6\quad \text{(E) } 7$


Solution

Problem 11

Solution

Problem 12

Solution

Problem 13

Solution

Problem 14

Solution

Problem 15

Solution

Problem 16

Solution

Problem 17

Solution

Problem 18

Solution

Problem 19

Solution

Problem 20

Solution

Problem 21

Solution

Problem 22

Solution


Problem 23

Solution

Problem 24

Solution

Problem 25

Solution

Problem 26

Solution

Problem 27

Solution

Problem 28

Solution

Problem 29

Solution

Problem 30

Solution

See also

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

F