1958 AHSME Problems/Problem 33

Revision as of 05:24, 3 October 2014 by Timneh (talk | contribs) (Created page with "== Problem == For one root of <math> ax^2 \plus{} bx \plus{} c \equal{} 0</math> to be double the other, the coefficients <math> a,\,b,\,c</math> must be related as follows: <ma...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

For one root of $ax^2 \plus{} bx \plus{} c \equal{} 0$ (Error compiling LaTeX. Unknown error_msg) to be double the other, the coefficients $a,\,b,\,c$ must be related as follows:

$\textbf{(A)}\ 4b^2 \equal{} 9c\qquad \textbf{(B)}\ 2b^2 \equal{} 9ac\qquad \textbf{(C)}\ 2b^2 \equal{} 9a\qquad \\ \textbf{(D)}\ b^2 \minus{} 8ac \equal{} 0\qquad \textbf{(E)}\ 9b^2 \equal{} 2ac$ (Error compiling LaTeX. Unknown error_msg)

Solution

$\fbox{}$

See Also

1958 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 32
Followed by
Problem 34
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png