2010 AIME II Problems/Problem 9

Revision as of 19:22, 13 March 2015 by Mathgeek2006 (talk | contribs) (Problem)

Problem

Let $ABCDEF$ be a regular hexagon. Let $G$, $H$, $I$, $J$, $K$, and $L$ be the midpoints of sides $AB$, $BC$, $CD$, $DE$, $EF$, and $AF$, respectively. The segments $\overline{AH}$, $\overline{BI}$, $\overline{CJ}$, $\overline{DK}$, $\overline{EL}$, and $\overline{FG}$ bound a smaller regular hexagon. Let the ratio of the area of the smaller hexagon to the area of $ABCDEF$ be expressed as a fraction $\frac {m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m + n$.

Solution

[asy] defaultpen(0.8pt+fontsize(12pt)); pair A,B,C,D,E,F; pair G,H,I,J,K,L; A=dir(0); B=dir(60); C=dir(120); D=dir(180); E=dir(240); F=dir(300); draw(A--B--C--D--E--F--cycle,blue);  G=(A+B)/2; H=(B+C)/2; I=(C+D)/2; J=(D+E)/2; K=(E+F)/2; L=(F+A)/2;  int i; for (i=0; i<6; i+=1) {  draw(rotate(60*i)*(A--H),dotted);  }   pair M,N,O,P,Q,R; M=extension(A,H,B,I); N=extension(B,I,C,J); O=extension(C,J,D,K); P=extension(D,K,E,L); Q=extension(E,L,F,G); R=extension(F,G,A,H); draw(M--N--O--P--Q--R--cycle,red);   label('$A$',A,(1,0)); label('$B$',B,NE); label('$C$',C,NW); label('$D$',D, W); label('$E$',E,SW); label('$F$',F,SE); label('$G$',G,NE); label('$H$',H, (0,1)); label('$I$',I,NW); label('$J$',J,SW); label('$K$',K, S); label('$L$',L,SE); label('$M$',M); label('$N$',N); label('$O$',(0,0),NE); dot((0,0)); [/asy]

Let $M$ be the intersection of $\overline{AH}$ and $\overline{BI}$

and $N$ be the intersection of $\overline{BI}$ and $\overline{CJ}$.

Let $O$ be the center.

Solution 1

Let $BC=2$ (without loss of generality).

Note that $\angle BMH$ is the vertical angle to an angle of regular hexagon, and so has degree $120^\circ$.

Because $\triangle ABH$ and $\triangle BCI$ are rotational images of one another, we get that $\angle{MBH}=\angle{HAB}$ and hence $\triangle ABH \sim \triangle BMH \sim \triangle BCI$.

Using a similar argument, $NI=MH$, and

\[MN=BI-NI-BM=BI-(BM+MH).\]

Applying the Law of cosines on $\triangle BCI$, $BI=\sqrt{2^2+1^2-2(2)(1)(\cos(120^\circ))}=\sqrt{7}$

\begin{align*}\frac{BC+CI}{BI}&=\frac{3}{\sqrt{7}}=\frac{BM+MH}{BH} \\ BM+MH&=\frac{3BH}{\sqrt{7}}=\frac{3}{\sqrt{7}} \\ MN&=BI-(BM+MH)=\sqrt{7}-\frac{3}{\sqrt{7}}=\frac{4}{\sqrt{7}} \\ \frac{\text{Area of smaller hexagon}}{\text{Area of bigger hexagon}}&=\left(\frac{MN}{BC}\right)^2=\left(\frac{2}{\sqrt{7}}\right)^2=\frac{4}{7}\end{align*}

Thus, the answer is 4 + 7 = $\boxed{011}$.

Solution 2

We can use coordinates. Let $O$ be at $(0,0)$ with $A$ at $(1,0)$,

then $B$ is at $(\cos(60^\circ),\sin(60^\circ))=\left(\frac{1}{2},\frac{\sqrt{3}}{2}\right)$,

$C$ is at $(\cos(120^\circ),\sin(120^\circ))=\left(-\frac{1}{2},\frac{\sqrt{3}}{2}\right)$,

$D$ is at $(\cos(180^\circ),\sin(180^\circ))=(-1,0)$,

\begin{align*}&H=\frac{B+C}{2}=\left(0,\frac{\sqrt{3}}{2}\right) \\ &I=\frac{C+D}{2}=\left(-\frac{3}{4},\frac{\sqrt{3}}{4}\right)\end{align*}


Line $AH$ has the slope of $-\frac{\sqrt{3}}{2}$ and the equation of $y=-\frac{\sqrt{3}}{2}(x-1)$


Line $BI$ has the slope of $\frac{\sqrt{3}}{5}$ and the equation $y-\frac{3}{2}=\frac{\sqrt{3}}{5}\left(x-\frac{1}{2}\right)$


Let's solve the system of equation to find $M$

\begin{align*}-\frac{\sqrt{3}}{2}(x-1)-\frac{3}{2}&=\frac{\sqrt{3}}{5}\left(x-\frac{1}{2}\right) \\ -5\sqrt{3}x&=2\sqrt{3}x-\sqrt{3} \\ x&=\frac{1}{7} \\ y&=-\frac{\sqrt{3}}{2}(x-1)=\frac{3\sqrt{3}}{7}\end{align*}

Finally,

\begin{align*}&\sqrt{x^2+y^2}=OM=\frac{1}{7}\sqrt{1^2+(3\sqrt{3})^2}=\frac{1}{7}\sqrt{28}=\frac{2}{\sqrt{7}} \\ &\frac{\text{Area of smaller hexagon}}{\text{Area of bigger hexagon}}=\left(\frac{OM}{OA}\right)^2=\left(\frac{2}{\sqrt{7}}\right)^2=\frac{4}{7}\end{align*}

Thus, the answer is $\boxed{011}$.

See also

2010 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png