2014 AIME I Problems/Problem 15
Problem 15
In ,
,
, and
. Circle
intersects
at
and
,
at
and
, and
at
and
. Given that
and
, length
, where
and
are relatively prime positive integers, and
is a positive integer not divisible by the square of any prime. Find
.
Solution
First we note that is an isosceles right triangle with hypotenuse
the same as the diameter of
. We also note that
since
is a right angle and the ratios of the sides are
.
From congruent arc intersections, we know that , and that from similar triangles
is also congruent to
. Thus,
is an isosceles triangle with
, so
is the midpoint of
and
. Similarly, we can find from angle chasing that
. Therefore,
is the angle bisector of
. From the angle bisector theorem, we have
, so
and
.
Lastly, we apply power of a point from points and
with respect to
and have
and
, so we can compute that
and
. From the Pythagorean Theorem, we result in
, so
Also: . We can also use Ptolemy's Theorem on quadrilateral
to figure what
is in terms of
:
\[\frac{3\omega}{5}\cdot \frac{\omega\sqrt{2}}{2}+\omega\cdot FG=\frac{4\omega}{5}\cdot \frac{\omega\sqrt{2}{2}\] (Error compiling LaTeX. Unknown error_msg)
Thus
a+b+c=25+2+14= \boxed{041}$
See also
2014 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Last Question | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.