2014 AIME I Problems/Problem 3

Revision as of 00:16, 25 February 2016 by E power pi times i (talk | contribs) (Solution 2)

Problem 3

Find the number of rational numbers $r,$ $0<r<1,$ such that when $r$ is written as a fraction in lowest terms, the numerator and the denominator have a sum of 1000.

Solution 1

We have that the set of these rational numbers is from $\dfrac{1}{999}$ to $\dfrac{499}{501}$ where each each element $\dfrac{n}{m}$ has $n+m =1000$ and $\dfrac{n}{m}$ is irreducible.

We note that $\dfrac{n}{m} =\dfrac{1000-m}{m}=\dfrac{1000}{m}-1$. Hence, $\dfrac{n}{m}$ is irreducible if $\dfrac{1000}{m}$ is irreducible, and $\dfrac{1000}{m}$ is irreducible if $m$ is not divisible by 2 or 5. Thus, the answer to the question is the number of integers between 999 and 501 inclusive that are not divisible by 2 or 5.

We note there are 499 numbers between 501 and 999, and

  • 249 numbers are divisible by 2
  • 99 numbers are divisible by 5
  • 49 numbers are divisible by 10

Using the Principle of Inclusion and Exclusion, we get that there are $499-249-99+49=200$ numbers between $501$ and $999$ are not divisible by either $2$ or $5$, so our answer is $\boxed{200}$.

Euler's Totient Function can also be used to arrive at 400 numbers relatively prime to 1000, meaning 200 possible fractions satisfying the necessary conditions.

Solution 2

If the initial manipulation is not obvious, instead ,consider the euclidean algorithm. Instead of using $\frac{n}{m}$ as the fraction to use the euclidean algorithm on, rewrite this as $\frac{500-x}{500+x} gcd(500+x,500-x)=gcd((500+x)+(500-x),500-x)=gcd(1000,500-x)$. Thus, we want gcd(1000,500-x)=1. You can either proceed as solution 1, or consider that no even numbers work, limiting us to 250 choices of numbers and restricting x to be odd. If x is odd, 500-x is odd, so the only possible common factors 1000 and 500-x can share are multiples of 5. Thus, we want to avoid these. There are 50 multiples of 5 less than 500, so the answer is $250-50=\boxed{200}$.

See also

2014 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png