1958 AHSME Problems/Problem 43

Revision as of 11:32, 23 February 2018 by Treetor10145 (talk | contribs) (Fix Diagram)

Problem

$\overline{AB}$ is the hypotenuse of a right triangle $ABC$. Median $\overline{AD}$ has length $7$ and median $\overline{BE}$ has length $4$. The length of $\overline{AB}$ is:

$\textbf{(A)}\ 10\qquad  \textbf{(B)}\ 5\sqrt{3}\qquad  \textbf{(C)}\ 5\sqrt{2}\qquad  \textbf{(D)}\ 2\sqrt{13}\qquad  \textbf{(E)}\ 2\sqrt{15}$

Solution

[asy] import geometry; unitsize(50); pair A = (0,0), B = (3,0), C = (0, 4); pair AB = midpoint(A--B), AC = midpoint(A--C); draw(A--B--C--A); draw(A--B, StickIntervalMarker(2, 1)); draw(A--C, StickIntervalMarker(2, 2)); draw(C--AB); draw(B--AC); dot(AB); dot(AC); MP("$A$", A, W); MP("$B$", B, E); MP("$C$", C, W); MP("$M$", AB, S); MP("$N$", AC, W); label("$x$", A--AB, S); label("$x$", AB--B, S); label("$y$", A--AC, W); label("$y$", AC--C, W); draw(rightanglemark(C, A, B)); [/asy]


$\fbox{D}$

See Also

1958 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 42
Followed by
Problem 44
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png