2018 AIME II Problems/Problem 14

Revision as of 07:47, 24 March 2018 by P groudon (talk | contribs) (Created page with "==Problem== The incircle <math>\omega</math> of triangle <math>ABC</math> is tangent to <math>\overline{BC}</math> at <math>X</math>. Let <math>Y \neq X</math> be the other i...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

The incircle $\omega$ of triangle $ABC$ is tangent to $\overline{BC}$ at $X$. Let $Y \neq X$ be the other intersection of $\overline{AX}$ with $\omega$. Points $P$ and $Q$ lie on $\overline{AB}$ and $\overline{AC}$, respectively, so that $\overline{PQ}$ is tangent to $\omega$ at $Y$. Assume that $AP = 3$, $PB = 4$, $AC = 8$, and $AQ = \dfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

2018 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png