2018 AIME II Problems/Problem 15

Revision as of 07:53, 24 March 2018 by P groudon (talk | contribs) (Created page with "==Problem== Find the number of functions <math>f</math> from <math>\{0, 1, 2, 3, 4, 5, 6\}</math> to the integers such that <math>f(0) = 0</math>, <math>f(6) = 12</math>, and...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

Find the number of functions $f$ from $\{0, 1, 2, 3, 4, 5, 6\}$ to the integers such that $f(0) = 0$, $f(6) = 12$, and

$|x - y|$ $\leq$ $|f(x) - f(y)|$ $\leq$ $3|x - y|$

for all $x$ and $y$ in $\{0, 1, 2, 3, 4, 5, 6\}$.

2018 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Last question
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png