1958 AHSME Problems/Problem 38

Revision as of 23:23, 13 March 2015 by Mathgeek2006 (talk | contribs) (Problem)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

Let $r$ be the distance from the origin to a point $P$ with coordinates $x$ and $y$. Designate the ratio $\frac{y}{r}$ by $s$ and the ratio $\frac{x}{r}$ by $c$. Then the values of $s^2 - c^2$ are limited to the numbers:

$\textbf{(A)}\ \text{less than }{-1}\text{ are greater than }{+1}\text{, both excluded}\qquad\\ \textbf{(B)}\ \text{less than }{-1}\text{ are greater than }{+1}\text{, both included}\qquad \\ \textbf{(C)}\ \text{between }{-1}\text{ and }{+1}\text{, both excluded}\qquad \\ \textbf{(D)}\ \text{between }{-1}\text{ and }{+1}\text{, both included}\qquad \\ \textbf{(E)}\ {-1}\text{ and }{+1}\text{ only}$

Solution

$\fbox{}$

See Also

1958 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 37
Followed by
Problem 39
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS