Difference between revisions of "1964 AHSME Problems/Problem 34"

(Problem)
Line 6: Line 6:
  
 
<math>\textbf{(D) }\frac{1}{2}[(n+1)(1-i)+2]\qquad \textbf{(E) }\frac{1}{8}(n^2+8-4ni)</math>
 
<math>\textbf{(D) }\frac{1}{2}[(n+1)(1-i)+2]\qquad \textbf{(E) }\frac{1}{8}(n^2+8-4ni)</math>
 +
 +
==See Also==
 +
{{AHSME 40p box|year=1964|num-b=33|num-a=35}}
 +
 +
[[Category:Introductory Algebra Problems]]
 +
 +
{{MAA Notice}}

Revision as of 23:17, 24 July 2019

Problem

If $n$ is a multiple of $4$, the sum $s=1+2i+3i^2+\cdots+(n+1)i^n$, where $i=\sqrt{-1}$, equals:

$\textbf{(A) }1+i\qquad\textbf{(B) }\frac{1}{2}(n+2)\qquad\textbf{(C) }\frac{1}{2}(n+2-ni)\qquad$

$\textbf{(D) }\frac{1}{2}[(n+1)(1-i)+2]\qquad \textbf{(E) }\frac{1}{8}(n^2+8-4ni)$

See Also

1964 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 33
Followed by
Problem 35
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS