# 1974 AHSME Problems/Problem 12

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

## Problem

If $g(x)=1-x^2$ and $f(g(x))=\frac{1-x^2}{x^2}$ when $x\not=0$, then $f(1/2)$ equals

$\mathrm{(A)\ } 3/4 \qquad \mathrm{(B) \ }1 \qquad \mathrm{(C) \ } 3 \qquad \mathrm{(D) \ } \sqrt{2}/2 \qquad \mathrm{(E) \ }\sqrt{2}$

## Solution

Notice that if we can find a $y$ such that $g(y)=\frac{1}{2}$, then we can plug that into the second equation to get $f\left(\frac{1}{2}\right)=f(g(y))=\frac{1-y^2}{y^2}$. Thus, we let $1-y^2=\frac{1}{2}\implies y^2=\frac{1}{2}$. Notice that, since our final expression only involves $y^2$, we don't need to take the square root. Thus, $f\left(\frac{1}{2}\right)=\frac{1-y^2}{y^2}=\frac{1-\frac{1}{2}}{\frac{1}{2}}=1, \boxed{\text{B}}$.

 1974 AHSME (Problems • Answer Key • Resources) Preceded byProblem 11 Followed byProblem 13 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 All AHSME Problems and Solutions