Difference between revisions of "1980 AHSME Problems/Problem 28"

(Created page with "== Problem == The polynomial <math>x^{2n}+1+(x+1)^{2n}</math> is not divisible by <math>x^2+x+1</math> if <math>n</math> equals <math>\text{(A)} \ 17 \qquad \text{(B)} \ 20 \...")
 
m (Solution)
(3 intermediate revisions by 2 users not shown)
Line 10: Line 10:
  
 
== Solution ==
 
== Solution ==
<math>\fbox{}</math>
+
Assume <math>h(x)=x^2+x+1</math>
 +
<math>(x+1)^2n = (h(x)+x)^n = g(x)*h(x) + x^n</math>
 +
 
 +
<math>x^2n = x^2n+x^(2n-1)+x^(2n-2)
 +
          -x^(2n-1)-x^(2n-2)-x^(2n-3)
 +
        +...</math>
 +
 
 +
<math>x^n = x^n+x^(n-1)+x^(n-2)
 +
        -x^(n-1)-x^(n-2)-x^(n-3)
 +
  +....</math>
 +
 
 +
Therefore, the left term from <math>x^2n</math> is <math>x^{(2n-3u)}</math>
 +
          the left term from <math>x^n</math> is <math>x^{(n-3v)}</math>,
 +
 
 +
If divisible by h(x), we need 2n-3u=1 and n-3v=2  or
 +
                              2n-3u=2 and n-3v=1
 +
 
 +
The solution will be n=1/2 mod(3). Therefore n=21 is impossible
 +
 
 +
~~Wei
  
 
== See also ==
 
== See also ==

Revision as of 12:58, 19 June 2021

Problem

The polynomial $x^{2n}+1+(x+1)^{2n}$ is not divisible by $x^2+x+1$ if $n$ equals

$\text{(A)} \ 17 \qquad  \text{(B)} \ 20 \qquad  \text{(C)} \ 21 \qquad  \text{(D)} \ 64 \qquad  \text{(E)} \ 65$

Solution

Assume $h(x)=x^2+x+1$ $(x+1)^2n = (h(x)+x)^n = g(x)*h(x) + x^n$

$x^2n = x^2n+x^(2n-1)+x^(2n-2)            -x^(2n-1)-x^(2n-2)-x^(2n-3)          +...$

$x^n = x^n+x^(n-1)+x^(n-2)          -x^(n-1)-x^(n-2)-x^(n-3)   +....$

Therefore, the left term from $x^2n$ is $x^{(2n-3u)}$

          the left term from $x^n$ is $x^{(n-3v)}$, 

If divisible by h(x), we need 2n-3u=1 and n-3v=2 or

                             2n-3u=2 and n-3v=1

The solution will be n=1/2 mod(3). Therefore n=21 is impossible

~~Wei

See also

1980 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 27
Followed by
Problem 29
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png