1983 AHSME Problems/Problem 30

Revision as of 23:42, 2 December 2021 by MRENTHUSIASM (talk | contribs) (Problem)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

Distinct points $A$ and $B$ are on a semicircle with diameter $MN$ and center $C$. The point $P$ is on $CN$ and $\angle CAP = \angle CBP = 10^{\circ}$. If $\stackrel{\frown}{MA} = 40^{\circ}$, then $\stackrel{\frown}{BN}$ equals

[asy] import geometry; import graph;  unitsize(2 cm);  pair A, B, C, M, N, P;  M = (-1,0); N = (1,0); C = (0,0); A = dir(140); B = dir(20); P = extension(A, A + rotate(10)*(C - A), B, B + rotate(10)*(C - B));  draw(M--N); draw(arc(C,1,0,180)); draw(A--C--B); draw(A--P--B);  label("$A$", A, NW); label("$B$", B, E); label("$C$", C, S); label("$M$", M, SW); label("$N$", N, SE); label("$P$", P, S); [/asy]

$\textbf{(A)}\ 10^{\circ}\qquad \textbf{(B)}\ 15^{\circ}\qquad \textbf{(C)}\ 20^{\circ}\qquad \textbf{(D)}\ 25^{\circ}\qquad \textbf{(E)}\ 30^{\circ}$

Solution

Since $\angle CAP = \angle CBP = 10^\circ$, quadrilateral $ABPC$ is cyclic (as shown below) by the converse of the theorem "angles inscribed in the same arc are equal".

[asy] import geometry; import graph;  unitsize(2 cm);  pair A, B, C, M, N, P;  M = (-1,0); N = (1,0); C = (0,0); A = dir(140); B = dir(20); P = extension(A, A + rotate(10)*(C - A), B, B + rotate(10)*(C - B));  draw(M--N); draw(arc(C,1,0,180)); draw(A--C--B); draw(A--P--B); draw(A--B); draw(circumcircle(A,B,C),dashed);  label("$A$", A, NW); label("$B$", B, E); label("$C$", C, S); label("$M$", M, SW); label("$N$", N, SE); label("$P$", P, S); [/asy]

Since $\angle ACM = 40^\circ$, $\angle ACP = 140^\circ$, so, using the fact that opposite angles in a cyclic quadrilateral sum to $180^{\circ}$, we have $\angle ABP = 40^\circ$. Hence $\angle ABC = \angle ABP - \angle CBP = 40^ \circ - 10^\circ = 30^\circ$.

Since $CA = CB$, triangle $ABC$ is isosceles, with $\angle BAC = \angle ABC = 30^\circ$. Now, $\angle BAP = \angle BAC - \angle CAP = 30^\circ - 10^\circ = 20^\circ$. Finally, again using the fact that angles inscribed in the same arc are equal, we have $\angle BCP = \angle BAP = \boxed{\textbf{(C)}\ 20^{\circ}}$.

See Also

1983 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 29
Followed by
Last Problem
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions


The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png