Difference between revisions of "1983 AHSME Problems/Problem 4"

(Created page with "<asy> pair A, B, C, D, E, F; A = (0, 1.732); B = (0.5, 0.866); C = (0,0); D = (1, 0); E = (1.5, 0.866); F = (1, 1.732); draw(A--B--C--D--E--F--A); label("A", A, dir(point--A))...")
 
(See Also)
 
(5 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 +
== Problem 4 ==
 +
 +
[[File:pdfresizer.com-pdf-convert.png]]
 +
 +
In the adjoining plane figure, sides <math>AF</math> and <math>CD</math> are parallel, as are sides <math>AB</math> and <math>EF</math>,
 +
and sides <math>BC</math> and <math>ED</math>. Each side has length <math>1</math>. Also, <math>\angle FAB = \angle BCD = 60^\circ</math>.
 +
The area of the figure is
 +
 +
<math>
 +
\textbf{(A)} \ \frac{\sqrt 3}{2} \qquad
 +
\textbf{(B)} \ 1 \qquad
 +
\textbf{(C)} \ \frac{3}{2} \qquad
 +
\textbf{(D)}\ \sqrt{3}\qquad
 +
\textbf{(E)}\ 2</math>   
 +
 +
[[1983 AHSME Problems/Problem 4|Solution]]
 +
 +
==Solution==
 
<asy>
 
<asy>
 
pair A, B, C, D, E, F;
 
pair A, B, C, D, E, F;
Line 8: Line 26:
 
F = (1, 1.732);
 
F = (1, 1.732);
 
draw(A--B--C--D--E--F--A);
 
draw(A--B--C--D--E--F--A);
label("A", A, dir(point--A));
+
label("$A$", A, NW);
 +
label("$B$", B, 3W);
 +
label("$C$", C, SW);
 +
label("$D$", D, SE);
 +
label("$E$", E, E);
 +
label("$F$", F, NE);
 +
draw(B--D, dashed+linewidth(0.5));
 +
draw(B--E, dashed+linewidth(0.5));
 +
draw(B--F, dashed+linewidth(0.5));
 
</asy>
 
</asy>
 +
 +
By rotating the diagram and drawing the dotted lines, we see that the figure can be divided into four equilateral triangles, each of side length <math>1</math>. The area of one such equilateral triangle is <math>\frac{\sqrt{3}}{4} \cdot 1^2 = \frac{\sqrt{3}}{4}</math>, which gives a total of <math>4\left(\frac{\sqrt{3}}{4}\right) = \sqrt{3}</math>, or <math>\boxed{D}</math>.
 +
 +
==See Also==
 +
{{AHSME box|year=1983|num-b=3|num-a=5}}
 +
 +
{{MAA Notice}}
 +
 +
[[Category: Introductory Geometry Problems]]

Latest revision as of 06:36, 27 January 2019

Problem 4

Pdfresizer.com-pdf-convert.png

In the adjoining plane figure, sides $AF$ and $CD$ are parallel, as are sides $AB$ and $EF$, and sides $BC$ and $ED$. Each side has length $1$. Also, $\angle FAB = \angle BCD = 60^\circ$. The area of the figure is

$\textbf{(A)} \ \frac{\sqrt 3}{2} \qquad  \textbf{(B)} \ 1 \qquad  \textbf{(C)} \ \frac{3}{2} \qquad  \textbf{(D)}\ \sqrt{3}\qquad \textbf{(E)}\ 2$

Solution

Solution

[asy] pair A, B, C, D, E, F; A = (0, 1.732); B = (0.5, 0.866); C = (0,0); D = (1, 0); E = (1.5, 0.866); F = (1, 1.732); draw(A--B--C--D--E--F--A); label("$A$", A, NW); label("$B$", B, 3W); label("$C$", C, SW); label("$D$", D, SE); label("$E$", E, E); label("$F$", F, NE); draw(B--D, dashed+linewidth(0.5)); draw(B--E, dashed+linewidth(0.5)); draw(B--F, dashed+linewidth(0.5)); [/asy]

By rotating the diagram and drawing the dotted lines, we see that the figure can be divided into four equilateral triangles, each of side length $1$. The area of one such equilateral triangle is $\frac{\sqrt{3}}{4} \cdot 1^2 = \frac{\sqrt{3}}{4}$, which gives a total of $4\left(\frac{\sqrt{3}}{4}\right) = \sqrt{3}$, or $\boxed{D}$.

See Also

1983 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions


The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png