# 1983 AIME Problems/Problem 11

## Problem

The solid shown has a square base of side length $s$. The upper edge is parallel to the base and has length $2s$. All other edges have length $s$. Given that $s=6\sqrt{2}$, what is the volume of the solid?

$[asy] size(180); import three; pathpen = black+linewidth(0.65); pointpen = black; currentprojection = perspective(30,-20,10); real s = 6 * 2^.5; triple A=(0,0,0),B=(s,0,0),C=(s,s,0),D=(0,s,0),E=(-s/2,s/2,6),F=(3*s/2,s/2,6); draw(A--B--C--D--A--E--D); draw(B--F--C); draw(E--F); label("A",A); label("B",B); label("C",C); label("D",D); label("E",E,N); label("F",F,N); [/asy]$

## Solution

### Solution 1

First, we find the height of the figure by drawing a perpendicular from the midpoint of $AD$ to $EF$. The hypotenuse of the triangle is the median of equilateral triangle $ADE$ one of the legs is $3\sqrt{2}$. We apply the Pythagorean Theorem to find that the height is equal to $6$.

$[asy] size(180); import three; pathpen = black+linewidth(0.65); pointpen = black; pen d = linewidth(0.65); pen l = linewidth(0.5); currentprojection = perspective(30,-20,10); real s = 6 * 2^.5; triple A=(0,0,0),B=(s,0,0),C=(s,s,0),D=(0,s,0),E=(-s/2,s/2,6),F=(3*s/2,s/2,6); triple Aa=(E.x,0,0),Ba=(F.x,0,0),Ca=(F.x,s,0),Da=(E.x,s,0); draw(A--B--C--D--A--E--D); draw(B--F--C); draw(E--F); draw(B--Ba--Ca--C,dashed+d); draw(A--Aa--Da--D,dashed+d); draw(E--(E.x,E.y,0),dashed+l); draw(F--(F.x,F.y,0),dashed+l); draw(Aa--E--Da,dashed+d); draw(Ba--F--Ca,dashed+d); label("A",A); label("B",B); label("C",C); label("D",D); label("E",E,N); label("F",F,N); label("12\sqrt{2}",(E+F)/2,N); label("6\sqrt{2}",(A+B)/2); label("6",(3*s/2,s/2,3),ENE); [/asy]$

Next, we complete the figure into a triangular prism, and find the area, which is $\frac{6\sqrt{2}\cdot 12\sqrt{2}\cdot 6}{2}=432$.

Now, we subtract off the two extra pyramids that we included, whose combined area is $2\cdot \left( \frac{6\sqrt{2}\cdot 3\sqrt{2} \cdot 6}{3} \right)=144$.

Thus, our answer is $432-144=\boxed{288}$.

### Solution 2

Extend $EA$ and $FB$ to meet at $G$, and $ED$ and $FC$ to meet at $H$. now, we have a regular tetrahedron $EFGH$, which has twice the volume of our original solid. This tetrahedron has side length $2s = 12\sqrt{2}$. Using the formula for the volume of a regular tetrahedron, which is $V = \frac{\sqrt{2}S^3}{12}$, where S is the side length of the tetrahedron, the volume of our original solid is:

$V = \frac{1}{2} \cdot \frac{\sqrt{2} \cdot (12\sqrt{2})^3}{12} = \boxed{288}$