Difference between revisions of "1983 AIME Problems/Problem 12"

(asy fmt)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
 
The length of diameter <math>AB</math> is a two digit integer. Reversing the digits gives the length of a perpendicular chord <math>CD</math>. The distance from their intersection point <math>H</math> to the center <math>O</math> is a positive rational number. Determine the length of <math>AB</math>.
 
The length of diameter <math>AB</math> is a two digit integer. Reversing the digits gives the length of a perpendicular chord <math>CD</math>. The distance from their intersection point <math>H</math> to the center <math>O</math> is a positive rational number. Determine the length of <math>AB</math>.
[[Image:1983number12.JPG]]
+
 
 +
<asy>
 +
pointpen=black; pathpen=black+linewidth(0.65);
 +
pair O=(0,0),A=(-65/2,0),B=(65/2,0);
 +
pair H=(-((65/2)^2-28^2)^.5,0),C=(H.x,28),D=(H.x,-28);
 +
D(CP(O,A));D(MP("A",A,W)--MP("B",B,E));D(MP("C",C,N)--MP("D",D));
 +
dot(MP("H",H,SE));dot(MP("O",O,SE));
 +
</asy><!-- Asymptote replacement for Image:1983number12.JPG by bpms -->
  
 
== Solution ==
 
== Solution ==
Let <math>AB=10x+y</math> and <math>CD=10y+x</math>. It follows that <math>CO=\frac{AB}{2}=\frac{10x+y}{2}</math> and <math>CH=\frac{CD}{2}=\frac{10y+x}{2}</math>. Applying the [[Pythagorean Theorem]] on <math>CO</math> and <math>CH</math>, <math>OH=\sqrt{\left(\frac{10x+y}{2}\right)^2-\left(\frac{10y+x}{2}\right)^2}=\sqrt{\frac{9}{4}\cdot 11(x+y)(x-y)}=\frac{3}{2}\sqrt{11(x+y)(x-y)}</math>.  
+
Let <math>AB=10x+y</math> and <math>CD=10y+x</math>. It follows that <math>CO=\frac{AB}{2}=\frac{10x+y}{2}</math> and <math>CH=\frac{CD}{2}=\frac{10y+x}{2}</math>. Applying the [[Pythagorean Theorem]] on <math>CO</math> and <math>CH</math>, <math>OH=\sqrt{\left(\frac{10x+y}{2}\right)^2-\left(\frac{10y+x}{2}\right)^2}</math> <math>=\sqrt{\frac{9}{4}\cdot 11(x+y)(x-y)}</math> <math>=\frac{3}{2}\sqrt{11(x+y)(x-y)}</math>.  
  
Because <math>OH</math> is a positive rational number, the quantity <math>\sqrt{11(x+y)(x-y)}</math> cannot contain any square roots. Therefore, <math>x+y</math> must equal eleven and <math>x-y</math> must be a perfect square (since <math>x+y>x-y</math>). The only pair <math>(x,y)</math> that satisfies this condition is <math>(6,5)</math>, so our answer is <math>65</math>.
+
Because <math>OH</math> is a positive rational number, the quantity <math>\sqrt{11(x+y)(x-y)}</math> cannot contain any square roots. Therefore, <math>x+y</math> must equal eleven and <math>x-y</math> must be a perfect square (since <math>x+y>x-y</math>). The only pair <math>(x,y)</math> that satisfies this condition is <math>(6,5)</math>, so our answer is <math>\boxed{065}</math>.
  
 
== See also ==
 
== See also ==
 
{{AIME box|year=1983|num-b=11|num-a=13}}
 
{{AIME box|year=1983|num-b=11|num-a=13}}
* [[AIME Problems and Solutions]]
 
* [[American Invitational Mathematics Examination]]
 
* [[Mathematics competition resources]]
 
  
 
[[Category:Intermediate Geometry Problems]]
 
[[Category:Intermediate Geometry Problems]]

Revision as of 19:05, 25 April 2008

Problem

The length of diameter $AB$ is a two digit integer. Reversing the digits gives the length of a perpendicular chord $CD$. The distance from their intersection point $H$ to the center $O$ is a positive rational number. Determine the length of $AB$.

[asy] pointpen=black; pathpen=black+linewidth(0.65); pair O=(0,0),A=(-65/2,0),B=(65/2,0); pair H=(-((65/2)^2-28^2)^.5,0),C=(H.x,28),D=(H.x,-28); D(CP(O,A));D(MP("A",A,W)--MP("B",B,E));D(MP("C",C,N)--MP("D",D)); dot(MP("H",H,SE));dot(MP("O",O,SE)); [/asy]

Solution

Let $AB=10x+y$ and $CD=10y+x$. It follows that $CO=\frac{AB}{2}=\frac{10x+y}{2}$ and $CH=\frac{CD}{2}=\frac{10y+x}{2}$. Applying the Pythagorean Theorem on $CO$ and $CH$, $OH=\sqrt{\left(\frac{10x+y}{2}\right)^2-\left(\frac{10y+x}{2}\right)^2}$ $=\sqrt{\frac{9}{4}\cdot 11(x+y)(x-y)}$ $=\frac{3}{2}\sqrt{11(x+y)(x-y)}$.

Because $OH$ is a positive rational number, the quantity $\sqrt{11(x+y)(x-y)}$ cannot contain any square roots. Therefore, $x+y$ must equal eleven and $x-y$ must be a perfect square (since $x+y>x-y$). The only pair $(x,y)$ that satisfies this condition is $(6,5)$, so our answer is $\boxed{065}$.

See also

1983 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions