Difference between revisions of "1986 AIME Problems/Problem 7"
(solution) |
I_like_pie (talk | contribs) (→See also) |
||
Line 7: | Line 7: | ||
== See also == | == See also == | ||
{{AIME box|year=1986|num-b=6|num-a=8}} | {{AIME box|year=1986|num-b=6|num-a=8}} | ||
+ | * [[AIME Problems and Solutions]] | ||
+ | * [[American Invitational Mathematics Examination]] | ||
+ | * [[Mathematics competition resources]] | ||
[[Category:Intermediate Number Theory Problems]] | [[Category:Intermediate Number Theory Problems]] |
Revision as of 14:49, 6 May 2007
Problem
The increasing sequence consists of all those positive integers which are powers of 3 or sums of distinct powers of 3. Find the term of this sequence.
Solution
Rewrite all of the terms in base 3. Since the numbers are sums of distinct powers of 3, in base 3 each number is a sequence of 1s and 0s (if there is a 2, then it is no longer the sum of distinct powers of 3). Therefore, we can recast this into base 2 (binary) in order to determine the 100th number. is equal to , so in binary form we get . However, we must change it back to base 3 for the answer, which is .
See also
1986 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 6 |
Followed by Problem 8 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |