1991 AIME Problems/Problem 13

Revision as of 18:22, 18 April 2007 by Gabiloncho (talk | contribs) (Solution)


A drawer contains a mixture of red socks and blue socks, at most 1991 in all. It so happens that, when two socks are selected randomly without replacement, there is a probability of exactly $\displaystyle \frac{1}{2}$ that both are red or both are blue. What is the largest possible number of red socks in the drawer that is consistent with this data?


Let $r$ and $b$ denote the number of red and blue socks, respectively. Also, let $t=r+b$.

The probability $P$ that when two socks are drawn without replacement, both are red or both are blue is given by


Solving the resulting quadratic equation $r^{2}-rt+t(t-1)/4=0$ for $r$ in terms of $t$, one obtains that


See also

1991 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions


Invalid username
Login to AoPS