1996 AIME Problems/Problem 2

Revision as of 19:31, 4 July 2013 by Nathan wailes (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

For each real number $x$, let $\lfloor x \rfloor$ denote the greatest integer that does not exceed x. For how many positive integers $n$ is it true that $n<1000$ and that $\lfloor \log_{2} n \rfloor$ is a positive even integer?

Solution

For integers $k$, we want $\lfloor \log_2 n\rfloor = 2k$, or $2k \le \log_2 n < 2k+1 \Longrightarrow 2^{2k} \le n < 2^{2k+1}$. Thus, $n$ must satisfy these inequalities (since $n < 1000$):

$4\leq n <8$
$16\leq n<32$
$64\leq n<128$

$256\leq n<512$

There are $4$ for the first inequality, $16$ for the second, $64$ for the third, and $256$ for the fourth, so the answer is $4+16+64+256=\boxed{340}$.

See also

1996 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png